SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krupp L) "

Sökning: WFRF:(Krupp L)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
4.
  • Coustenis, A., et al. (författare)
  • TandEM : Titan and Enceladus mission
  • 2009
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 23:3, s. 893-946
  • Tidskriftsartikel (refereegranskat)abstract
    • TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (MontgolfiSre) and possibly several landing probes to be delivered through the atmosphere.
  •  
5.
  • Tinetti, G., et al. (författare)
  • A chemical survey of exoplanets with ARIEL
  • 2018
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 46:1, s. 135-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
  •  
6.
  •  
7.
  •  
8.
  • Gianfrancesco, MA, et al. (författare)
  • Genetic risk factors for pediatric-onset multiple sclerosis
  • 2018
  • Ingår i: Multiple sclerosis (Houndmills, Basingstoke, England). - : SAGE Publications. - 1477-0970 .- 1352-4585. ; 24:14, s. 1825-1834
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong evidence supports the role of both genetic and environmental factors in pediatric-onset multiple sclerosis (POMS) etiology. Objective: We comprehensively investigated the association between established major histocompatibility complex (MHC) and non-MHC adult multiple sclerosis (MS)-associated variants and susceptibility to POMS. Methods: Cases with onset <18 years ( n = 569) and controls ( n = 16,251) were included from the United States and Sweden. Adjusted logistic regression and meta-analyses were performed for individual risk variants and a weighted genetic risk score (wGRS) for non-MHC variants. Results were compared to adult MS cases ( n = 7588). Results: HLA–DRB1*15:01 was strongly associated with POMS (odds ratio (OR)meta = 2.95, p < 2.0 × 10−16). Furthermore, 28 of 104 non-MHC variants studied (23%) were associated ( p < 0.05); POMS cases carried, on average, a higher burden of these 28 variants compared to adults (ORavg = 1.24 vs 1.13, respectively), though the difference was not significant. The wGRS was strongly associated with POMS (ORmeta = 2.77, 95% confidence interval: 2.33, 3.32, p < 2.0 × 10−16) and higher, on average, when compared to adult cases. Additional class III risk variants in the MHC region associated with POMS were revealed after accounting for HLA–DRB1*15:01 and HLA–A*02. Conclusion: Pediatric and adult MS share many genetic variants suggesting similar biological processes are present. MHC variants beyond HLA–DRB1*15:01 and HLA–A*02 are also associated with POMS.
  •  
9.
  •  
10.
  • Halperin, J J, et al. (författare)
  • Practice parameter: treatment of nervous system Lyme disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology.
  • 2007
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 1526-632X .- 0028-3878. ; 69:1, s. 91-102
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To provide evidence-based recommendations on the treatment of nervous system Lyme disease and post-Lyme syndrome. Three questions were addressed: 1) Which antimicrobial agents are effective? 2) Are different regimens preferred for different manifestations of nervous system Lyme disease? 3) What duration of therapy is needed? METHODS: The authors analyzed published studies (1983-2003) using a structured review process to classify the evidence related to the questions posed. RESULTS: The panel reviewed 353 abstracts which yielded 112 potentially relevant articles that were reviewed, from which 37 articles were identified that were included in the analysis. CONCLUSIONS: There are sufficient data to conclude that, in both adults and children, this nervous system infection responds well to penicillin, ceftriaxone, cefotaxime, and doxycycline (Level B recommendation). Although most studies have used parenteral regimens for neuroborreliosis, several European studies support use of oral doxycycline in adults with meningitis, cranial neuritis, and radiculitis (Level B), reserving parenteral regimens for patients with parenchymal CNS involvement, other severe neurologic symptomatology, or failure to respond to oral regimens. The number of children (> or =8 years of age) enrolled in rigorous studies of oral vs parenteral regimens has been smaller, making conclusions less statistically compelling. However, all available data indicate results are comparable to those observed in adults. In contrast, there is no compelling evidence that prolonged treatment with antibiotics has any beneficial effect in post-Lyme syndrome (Level A).
  •  
11.
  • Huybrighs, H. L. F., et al. (författare)
  • An Active Plume Eruption on Europa During Galileo Flyby E26 as Indicated by Energetic Proton Depletions
  • 2020
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 47:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong depletions of energetic protons (115-244 keV) were observed during Galileo flyby E26 of Europa. We simulate the flux of energetic protons using a Monte Carlo particle backtracing code and show that energetic proton depletions during E26 are reproduced by taking into account the perturbations of the electromagnetic fields calculated by magnetohydrodynamic (MHD) simulations and charge exchange with a global atmosphere and plume. A depletion feature occurring shortly after closest approach is driven by plume associated charge exchange, or a combination with plume associated field perturbations. We therefore conclude, with a new method and independent data set, that Galileo could have encountered a plume during E26.
  •  
12.
  • Huybrighs, H. L. F., et al. (författare)
  • Reply to Comment on "An Active Plume Eruption on Europa During Galileo Flyby E26 as Indicated by Energetic Proton Depletions"
  • 2021
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 48:18
  • Tidskriftsartikel (refereegranskat)abstract
    • In Huybrighs et al. (2020, https://doi.org/10.1029/2020gl087806) we investigated energetic proton depletions along Galileo's Europa flyby E26. Based on a particle tracing analysis, we proposed that depletions are caused by perturbed electromagnetic fields combined with atmospheric charge exchange and possible plumes. One depletion feature identified as a plume signature was shown to be an artifact (Jia et al., 2021, https://doi.org/10.1029/2020gl091550). Despite that, here we emphasize that Huybrighs et al. (2020, https://doi.org/10.1029/2020gl087806) demonstrates that plumes can cause proton depletions and that these features should be sought after. Furthermore, the conclusions on the importance of perturbed electromagnetic fields and atmospheric charge exchange on the depletions are unaffected. We suggest that the artifact's cause is a mistagging of protons as heavier ions by EPD. The artifact prevents us from confirming or excluding that there is a plume-associated depletion. We also address comments on the MHD simulations and demonstrate that 540-1,040 keV losses are not necessarily inconsistent with 115-244 keV losses by plume-associated charge exchange. Plain Language Summary In Huybrighs et al. (2020, https://doi.org/10.1029/2020gl087806) we identified why fast protons were disappearing during Europa flyby E26 by Galileo. Beyond impacting on the surface, we identified several contributing factors: First, perturbed electromagnetic fields resulting from the interaction of Europa's atmosphere with the magnetospheric plasma, which deflect the protons. Second, atmospheric charge exchange. We also showed that a water plume eruption could cause a region in which disappearances occur due to a combination of charge exchange and magnetic deflections. We identified a 20s decrease of protons as evidence of such a plume. However, an artifact in the data reported by Jia et al. (2021, https://doi.org/10.1029/2020gl091550) coincides with this 20s moment and prevents us from reaching a conclusion on the occurrence of a plume-associated depletion. We emphasize that our conclusions on the importance of perturbed fields and charge exchange are unaffected, as the artifact only affects a short segment of the data we analyzed. Furthermore, our results demonstrate that plumes can cause proton depletions and that these features should be sought after in the data.
  •  
13.
  • Raizen, David M., et al. (författare)
  • Beyond the symptom : the biology of fatigue
  • 2023
  • Ingår i: Sleep. - : Oxford University Press. - 0161-8105 .- 1550-9109. ; 46:9
  • Tidskriftsartikel (refereegranskat)abstract
    • A workshop titled “Beyond the Symptom: The Biology of Fatigue” was held virtually September 27–28, 2021. It was jointly organized by the Sleep Research Society and the Neurobiology of Fatigue Working Group of the NIH Blueprint Neuroscience Research Program. For access to the presentations and video recordings, see: https://neuroscienceblueprint.nih.gov/about/event/beyond-symptom-biology-fatigue.The goals of this workshop were to bring together clinicians and scientists who use a variety of research approaches to understand fatigue in multiple conditions and to identify key gaps in our understanding of the biology of fatigue. This workshop summary distills key issues discussed in this workshop and provides a list of promising directions for future research on this topic. We do not attempt to provide a comprehensive review of the state of our understanding of fatigue, nor to provide a comprehensive reprise of the many excellent presentations. Rather, our goal is to highlight key advances and to focus on questions and future approaches to answering them.
  •  
14.
  • Witasse, O., et al. (författare)
  • Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto : Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:8, s. 7865-7890
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss observations of the journey throughout the Solar System of a large interplanetary coronal mass ejection (ICME) that was ejected at the Sun on 14 October 2014. The ICME hit Mars on 17 October, as observed by the Mars Express, Mars Atmosphere and Volatile EvolutioN Mission (MAVEN), Mars Odyssey, and Mars Science Laboratory (MSL) missions, 44h before the encounter of the planet with the Siding-Spring comet, for which the space weather context is provided. It reached comet 67P/Churyumov-Gerasimenko, which was perfectly aligned with the Sun and Mars at 3.1 AU, as observed by Rosetta on 22 October. The ICME was also detected by STEREO-A on 16 October at 1 AU, and by Cassini in the solar wind around Saturn on the 12 November at 9.9AU. Fortuitously, the New Horizons spacecraft was also aligned with the direction of the ICME at 31.6 AU. We investigate whether this ICME has a nonambiguous signature at New Horizons. A potential detection of this ICME by Voyager 2 at 110-111 AU is also discussed. The multispacecraft observations allow the derivation of certain properties of the ICME, such as its large angular extension of at least 116 degrees, its speed as a function of distance, and its magnetic field structure at four locations from 1 to 10 AU. Observations of the speed data allow two different solar wind propagation models to be validated. Finally, we compare the Forbush decreases (transient decreases followed by gradual recoveries in the galactic cosmic ray intensity) due to the passage of this ICME at Mars, comet 67P, and Saturn.
  •  
15.
  •  
16.
  • Jinks, S. L., et al. (författare)
  • Cassini multi-instrument assessment of Saturn's polar cap boundary
  • 2014
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 119:10, s. 8161-8177
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first systematic investigation of the polar cap boundary in Saturn's high-latitude magnetosphere through a multi-instrument assessment of various Cassini in situ data sets gathered between 2006 and 2009. We identify 48 polar cap crossings where the polar cap boundary can be clearly observed in the step in upper cutoff of auroral hiss emissions from the plasma wave data, a sudden increase in electron density, an anisotropy of energetic electrons along the magnetic field, and an increase in incidence of higher-energy electrons from the low-energy electron spectrometer measurements as we move equatorward from the pole. We determine the average level of coincidence of the polar cap boundary identified in the various in situ data sets to be 0.34 degrees 0.05 degrees colatitude. The average location of the boundary in the southern (northern) hemisphere is found to be at 15.6 degrees (13.3 degrees) colatitude. In both hemispheres we identify a consistent equatorward offset between the poleward edge of the auroral upward directed field-aligned current region of similar to 1.5-1.8 degrees colatitude to the corresponding polar cap boundary. We identify atypical observations in the boundary region, including observations of approximately hourly periodicities in the auroral hiss emissions close to the pole. We suggest that the position of the southern polar cap boundary is somewhat ordered by the southern planetary period oscillation phase but that it cannot account for the boundary's full latitudinal variability. We find no clear evidence of any ordering of the northern polar cap boundary location with the northern planetary period magnetic field oscillation phase.
  •  
17.
  • Langdon, DW, et al. (författare)
  • Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS)
  • 2012
  • Ingår i: Multiple sclerosis (Houndmills, Basingstoke, England). - : SAGE Publications. - 1477-0970 .- 1352-4585. ; 18:6, s. 891-898
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cognitive impairment in MS impacts negatively on many patients at all disease stages and in all subtypes. Full clinical cognitive assessment is expensive, requiring expert staff and special equipment. Test versions and normative data are not available for all languages and cultures. Objective: To recommend a brief cognitive assessment for multiple sclerosis (MS) that is optimized for small centers, with one or few staff members, who may not have neuropsychological training and constructed to maximize international use. Methods: An expert committee of twelve members representing the main cultural groups that have so far contributed considerable data about MS cognitive dysfunction was convened. Following exhaustive literature review, peer-reviewed articles were selected to cover a broad spectrum of cultures and scales that targeted cognitive domains vulnerable to MS. Each was rated by two committee members and candidates scales were rated on psychometric qualities (reliability, validity, and sensitivity), international application, ease of administration, feasibility in the specified context, and acceptability to patients. Results: The committee recommended the Symbol Digit Modalities Test, if only 5 minutes was available, with the addition of the California Verbal Learning Test – Second Edition and the Brief Visuospatial Memory Test – Revised learning trials if a further 10 minutes could be allocated for testing. Conclusions: A brief cognitive assessment for MS has been recommended. A validation protocol has been prepared for language groups and validation studies have commenced.
  •  
18.
  • Quétel, C. R., et al. (författare)
  • Methylmercury in tuna: demonstrating measurement capabilities and evaluating comparability of results worldwide from the CCQM P-39 comparison
  • 2005
  • Ingår i: Journal of Analytical Atomic Spectrometry. - : Royal Society of Chemistry (RSC). - 0267-9477 .- 1364-5544. ; 20, s. 1058-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Six metrology institutes (NMIs) representing at the Comité International des Poids et Mesures (CIPM) 4 Member States of the Metre Convention and 2 international organisations, and 8 expert laboratories selected outside CIPM have compared their capabilities to quantitatively measure methylmercury (MeHg) in a prepared tuna material containing approximately 4.3 mg kg–1 Hg. This comparison was the object of the CIPM–Comité Consultatif pour la Quantité de Matière (CCQM) Pilot Study 39, organised by the Institute for Reference Materials and Measurements (IRMM), from the European Commission—Joint Research Centre. Beside the test material itself, a bottle of the BCR-464 tuna Certified Reference Material (CRM) and an ampoule of IRMM-670, a 202Hg isotope enriched MeHg candidate isotopic CRM, were distributed to all participants, who were free to apply the measurement strategy of their choice. Four, including 1 NMI, relied on external calibration or the method of standard additions, whereas the other 10 implemented an isotope dilution mass spectrometry (IDMS) approach and chose to use the IRMM-670 for their measurements. Alkaline digestion at room temperature (with manual shaking) or high temperature (under sonication, oven or hot plate conditions) was employed by most participants, with hydrochloric acid leaching the second most popular choice. Alkylation (4 phenylations, 4 ethylations and 3 propylations) in the aqueous phase was preferred by a large majority over butylation by the Grignard reaction. All participants were requested to estimate the uncertainty associated with their results and 9 out of 14 stated relative combined uncertainties below 6%(k= 2). Despite this apparent consensus, the perception of which factor caused the largest contribution to this estimation differed among participants because of the differences in the analytical methodologies deployed but also because of wide differences of the concepts of uncertainty estimation. The mixture mode(MM) median, calculated also from the measurement uncertainties stated by the participants, was 1.967 ± 0.204 × 10–5 mol kg–1(95% confidence). Twelve of the results were re-grouped within a range of less than 0.3 × 10–5 mol kg–1(MM median = 1.967 ± 0.162 × 10–5 mol kg–1, 95% confidence): they nearly all (1 exception) overlapped with each other within k= 2 stated uncertainties. For the other 2 results the uncertainty seemed to have been particularly underestimated as they lay, respectively, at more than 20% above and less than –40% below the overall average. The relative standard deviation of the results of 9 laboratories out of the 10 that applied IDMS was about 2.6%. It can be assumed from the degree of equivalence shown by 12 out of 14 study participants that, at present, laboratories worldwide are potentially able to supply accurate results for MeHg in fish-type matrices (containing about 2 × 10–5 mol kg–1) within ±10% uncertainty. This encouraging outcome permitted scheduling of a follow-up CCQM-K43 key comparison for a lower MeHg content level in salmon tissues.
  •  
19.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy