SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krusche Alex V.) "

Sökning: WFRF:(Krusche Alex V.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sawakuchi, Henrique O., et al. (författare)
  • Methane emissions from Amazonian Rivers and their contribution to the global methane budget
  • 2014
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 20:9, s. 2829-2840
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane (CH4) fluxes from world rivers are still poorly constrained, with measurements restricted mainly to temperate climates. Additional river flux measurements, including spatio-temporal studies, are important to refine extrapolations. Here we assess the spatio-temporal variability of CH4 fluxes from the Amazon and its main tributaries, the Negro, Solimoes, Madeira, Tapajos, Xingu, and Para Rivers, based on direct measurements using floating chambers. Sixteen of 34 sites were measured during low and high water seasons. Significant differences were observed within sites in the same river and among different rivers, types of rivers, and seasons. Ebullition contributed to more than 50% of total emissions for some rivers. Considering only river channels, our data indicate that large rivers in the Amazon Basin release between 0.40 and 0.58 Tg CH4 yr(-1). Thus, our estimates of CH4 flux from all tropical rivers and rivers globally were, respectively, 19-51% to 31-84% higher than previous estimates, with large rivers of the Amazon accounting for 22-28% of global river CH4 emissions.
  •  
2.
  • Bertassoli, Dailson J. Jr., et al. (författare)
  • How green can Amazon hydropower be? : Net carbon emission from the largest hydropower plant in Amazonia
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 7:26
  • Tidskriftsartikel (refereegranskat)abstract
    • The current resurgence of hydropower expansion toward tropical areas has been largely based on run-of-the-river (ROR) dams, which are claimed to have lower environmental impacts due to their smaller reservoirs. The Belo Monte dam was built in Eastern Amazonia and holds the largest installed capacity among ROR power plants worldwide. Here, we show that postdamming greenhouse gas (GHG) emissions in the Belo Monte area are up to three times higher than preimpoundment fluxes and equivalent to about 15 to 55 kg CO(2)eq MWh(-1). Since per-area emissions in Amazonian reservoirs are significantly higher than global averages, reducing flooded areas and prioritizing the power density of hydropower plants seem to effectively reduce their carbon footprints. Nevertheless, total GHG emissions are substantial even from this leading-edge ROR power plant. This argues in favor of avoiding hydropower expansion in Amazonia regardless of the reservoir type.
  •  
3.
  • Sawakuchi, Henrique O., et al. (författare)
  • Oxidative mitigation of aquatic methane emissions in large Amazonian rivers
  • 2016
  • Ingår i: Global Change Biology. - : WILEY-BLACKWELL. - 1354-1013 .- 1365-2486. ; 22:3, s. 1075-1085
  • Tidskriftsartikel (refereegranskat)abstract
    • The flux of methane (CH4) from inland waters to the atmosphere has a profound impact on global atmospheric greenhouse gas (GHG) levels, and yet, strikingly little is known about the dynamics controlling sources and sinks of CH4 in the aquatic setting. Here, we examine the cycling and flux of CH4 in six large rivers in the Amazon basin, including the Amazon River. Based on stable isotopic mass balances of CH4, inputs and outputs to the water column were estimated. We determined that ecosystem methane oxidation (MOX) reduced the diffusive flux of CH4 by approximately 28-96% and varied depending on hydrologic regime and general geochemical characteristics of tributaries of the Amazon River. For example, the relative amount of MOX was maximal during high water in black and white water rivers and minimal in clear water rivers during low water. The abundance of genetic markers for methane-oxidizing bacteria (pmoA) was positively correlated with enhanced signals of oxidation, providing independent support for the detected MOX patterns. The results indicate that MOX in large Amazonian rivers can consume from 0.45 to 2.07 Tg CH4 yr(-1), representing up to 7% of the estimated global soil sink. Nevertheless, climate change and changes in hydrology, for example, due to construction of dams, can alter this balance, influencing CH4 emissions to atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy