SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kudra Marina 1992) "

Sökning: WFRF:(Kudra Marina 1992)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tholen, Mats O., et al. (författare)
  • Measurement and control of a superconducting quantum processor with a fully integrated radio-frequency system on a chip
  • 2022
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 93:10, s. 104711-
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a digital microwave platform called Presto, designed for measurement and control of multiple quantum bits (qubits) and based on the third-generation radio-frequency system on a chip. Presto uses direct digital synthesis to create signals up to 9 GHz on 16 synchronous output ports, while synchronously analyzing responses on 16 input ports. Presto has 16 DC-bias outputs, four inputs and four outputs for digital triggers or markers, and two continuous-wave outputs for synthesizing frequencies up to 15 GHz. Scaling to a large number of qubits is enabled through deterministic synchronization of multiple Presto units. A Python application programming interface configures a firmware for synthesis and analysis of pulses, coordinated by an event sequencer. The analysis integrates template matching (matched filtering) and low-latency (184-254 ns) feedback to enable a wide range of multi-qubit experiments. We demonstrate Presto's capabilities with experiments on a sample consisting of two superconducting qubits connected via a flux-tunable coupler. We show single-shot readout and active reset of a single qubit; randomized benchmarking of single-qubit gates showing 99.972% fidelity, limited by the coherence time of the qubit; and calibration of a two-qubit iSWAP gate. 
  •  
2.
  • Burnett, Jonathan, 1987, et al. (författare)
  • Decoherence benchmarking of superconducting qubits
  • 2019
  • Ingår i: npj Quantum Information. - : Springer Science and Business Media LLC. - 2056-6387. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We benchmark the decoherence of superconducting transmon qubits to examine the temporal stability of energy relaxation, dephasing, and qubit transition frequency. By collecting statistics during measurements spanning multiple days, we find the mean parameters (T) over bar (1) = 49 mu s and (T) over bar (2)* = 95 mu s; however, both of these quantities fluctuate, explaining the need for frequent re-calibration in qubit setups. Our main finding is that fluctuations in qubit relaxation are local to the qubit and are caused by instabilities of near-resonant two-level-systems (TLS). Through statistical analysis, we determine sub-millihertz switching rates of these TLS and observe the coherent coupling between an individual TLS and a transmon qubit. Finally, we find evidence that the qubit's frequency stability produces a 0.8 ms limit on the pure dephasing which we also observe. These findings raise the need for performing qubit metrology to examine the reproducibility of qubit parameters, where these fluctuations could affect qubit gate fidelity.
  •  
3.
  • Eriksson, Axel, 1989, et al. (författare)
  • Universal control of a bosonic mode via drive-activated native cubic interactions
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Linear bosonic modes offer a hardware-efficient alternative for quantum information processing but require access to some nonlinearity for universal control. The lack of nonlinearity in photonics has led to encoded measurement-based quantum computing, which relies on linear operations but requires access to resourceful (’nonlinear’) quantum states, such as cubic phase states. In contrast, superconducting microwave circuits offer engineerable nonlinearities but suffer from static Kerr nonlinearity. Here, we demonstrate universal control of a bosonic mode composed of a superconducting nonlinear asymmetric inductive element (SNAIL) resonator, enabled by native nonlinearities in the SNAIL element. We suppress static nonlinearities by operating the SNAIL in the vicinity of its Kerr-free point and dynamically activate nonlinearities up to third order by fast flux pulses. We experimentally realize a universal set of generalized squeezing operations, as well as the cubic phase gate, and exploit them to deterministically prepare a cubic phase state in 60 ns. Our results initiate the experimental field of polynomial quantum computing, in the continuous-variables notion originally introduced by Lloyd and Braunstein.
  •  
4.
  • Fadavi Roudsari, Anita, 1978, et al. (författare)
  • Three-wave mixing traveling-wave parametric amplifier with periodic variation of the circuit parameters
  • 2023
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 122:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the implementation of a near-quantum-limited, traveling-wave parametric amplifier that uses three-wave mixing (3WM). To favor amplification by 3WM, we use superconducting nonlinear asymmetric inductive element (SNAIL) loops, biased with a dc magnetic flux. In addition, we equip the device with dispersion engineering features to create a stopband at the second harmonic of the pump and suppress the propagation of the higher harmonics that otherwise degrade the amplification. With a chain of 440 SNAILs, the amplifier provides up to 20 dB gain and a 3-dB bandwidth of 1 GHz. The added noise by the amplifier is found to be less than one photon.
  •  
5.
  • Kudra, Marina, 1992 (författare)
  • Building a Bosonic Microwave Qubit
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Superconducting circuits is a promising platform for quantum computing. Quantum information is usually stored in discrete two-level qubits e.g. in transmon qubits. These qubits are interconnected and placed in grids to form logical qubits, and many logical qubits together form a quantum computer. In this thesis, we consider encoding quantum information in a resonator instead of the two-level qubit. Resonators can host bosonic modes that have, in principle, an infinite number of quantum levels in which we redundantly can encode a discrete qubit. This makes bosonic qubits hardware efficient, since we can perform error correction directly on a single hardware component, namely the resonator. However, we will still need to use an ancilla two-level qubit to universally control the bosonic qubit. This thesis can be interpreted as an instruction guide on creating a bosonic microwave qubit and it contains the following chapters. We first introduce the cryogenic setup and the state-of-the-art room-temperature hardware that generates the microwave pulses we need to perform all the experiments in this thesis. We discuss the latest generation of the room-temperature measurement- and control-system we used for both bosonic and discrete variable qubit systems. We then introduce the hardware components that are needed to form a bosonic qubit, namely a superconducting transmon qubit and a 3D superconducting cavity. We explore the fluctuations of their coherence properties, and we try to understand the sources of noise that limit those properties. Next, we create arbitrary bosonic states and gates by using interleaved sequences of displacements and optimized selective number-dependent arbitrary phase gates. We characterize a bosonic gate, the X-gate on the binomially encoded qubit, by coherent state process tomography. We then characterize the selective photon addition gate. We implement this gate by a comb of off-resonant drives that simultaneously excite the qubit and add a photon to the cavity depending on its state. Supplemented by an unconditional qubit reset, this gate is suitable for single photon error correction.
  •  
6.
  • Kudra, Marina, 1992, et al. (författare)
  • High quality three-dimensional aluminum microwave cavities
  • 2020
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 117:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a comprehensive study of internal quality factors in superconducting stub-geometry three-dimensional cavities made of aluminum. We use wet etching, annealing, and electrochemical polishing to improve the as machined quality factor. We find that the dominant loss channel is split between the two-level system loss and an unknown source with a 40:60 proportion. A total of 17 cavities of different purity, resonance frequency, and size were studied. Our treatment results in reproducible cavities, with 10 of them showing internal quality factors above 80 x 10(6) at a power corresponding to an average of a single photon in the cavity. The best cavity has an internal quality factor of 115 x 10(6) at a single photon level. (C) 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/).
  •  
7.
  • Kudra, Marina, 1992, et al. (författare)
  • Robust Preparation of Wigner-Negative States with Optimized SNAP-Displacement Sequences
  • 2022
  • Ingår i: PRX Quantum. - : AMER PHYSICAL SOC. - 2691-3399. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Hosting nonclassical states of light in three-dimensional microwave cavities has emerged as a promising paradigm for continuous-variable quantum information processing. Here we experimentally demonstrate high-fidelity generation of a range of Wigner-negative states useful for quantum computation, such as Schrodinger-cat states, binomial states, Gottesman-Kitaev-Preskill states, as well as cubic phase states. The latter states have been long sought after in quantum optics and have never been achieved experimentally before. We use a sequence of interleaved selective number-dependent arbitrary phase (SNAP) gates and displacements. We optimize the state preparation in two steps. First we use a gradient-descent algorithm to optimize the parameters of the SNAP and displacement gates. Then we optimize the envelope of the pulses implementing the SNAP gates. Our results show that this way of creating highly nonclassical states in a harmonic oscillator is robust to fluctuations of the system parameters such as the qubit frequency and the dispersive shift.
  •  
8.
  • Lu, Yong, 1989, et al. (författare)
  • Resolving Fock states near the Kerr-free point of a superconducting resonator
  • 2023
  • Ingår i: npj Quantum Information. - 2056-6387. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Nonlinear Asymmetric Inductive eLement). Such a device possesses a Kerr-free point in which the external magnetic flux allows to suppress the Kerr interaction. We have excited photons near this Kerr-free point and characterized the device using a transmon qubit. The excitation spectrum of the qubit allows to observe photon-number-dependent frequency shifts about nine times larger than the qubit linewidth. Our study demonstrates a compact integrated platform for continuous-variable quantum processing that combines large couplings, considerable relaxation times and excellent control over the photon mode structure in the microwave domain.
  •  
9.
  • Niepce, David, 1984, et al. (författare)
  • Stability of superconducting resonators: Motional narrowing and the role of Landau-Zener driving of two-level defects
  • 2021
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:39
  • Tidskriftsartikel (refereegranskat)abstract
    • Frequency instability of superconducting resonators and qubits leads to dephasing and time-varying energy loss and hinders quantum processor tune-up. Its main source is dielectric noise originating in surface oxides. Thorough noise studies are needed to develop a comprehensive understanding and mitigation strategy of these fluctuations. We use a frequency-locked loop to track the resonant frequency jitter of three different resonator types—one niobium nitride superinductor, one aluminum coplanar waveguide, and one aluminum cavity—and we observe notably similar random telegraph signal fluctuations. At low microwave drive power, the resonators exhibit multiple, unstable frequency positions, which, for increasing power, coalesce into one frequency due to motional narrowing caused by sympathetic driving of two-level system defects by the resonator. In all three devices, we identify a dominant fluctuator whose switching amplitude (separation between states) saturates with increasing drive power, but whose characteristic switching rate follows the power law dependence of quasi-classical Landau-Zener transitions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy