SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kumamoto A.) "

Sökning: WFRF:(Kumamoto A.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Oyama, S., et al. (författare)
  • An Ephemeral Red Arc Appeared at 68 degrees MLat at a Pseudo Breakup During Geomagnetically Quiet Conditions
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 125:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Various subauroral optical features have been studied by analyzing data collected during periods of geomagnetic disturbances. Most events have been typically found at geomagnetic latitudes of 45-60 degrees. In this study, however, we present a red arc event found at geomagnetic 68 degrees north (L approximate to 7.1) in the Scandinavian sector during a period of geomagnetically quiet conditions within a short intermission between two high-speed solar wind events. The red arc appeared to coincide with a pseudo breakup at geomagnetic 71-72 degrees N and a rapid equatorward expansion of the polar cap. However, the red arc disappeared in approximately 7 min. Simultaneous measurements with the Swarm A/C satellites indicated the appearance of the red arc at the ionospheric trough minimum and a conspicuous enhancement of the electron temperature, suggesting the generation of the arc by heat flux. Since there are meaningful differences in the red arc features from already-known subauroral optical features such as the stable auroral red (SAR) arc, we considered that the red arc is a new phenomenon. We suggest that the ephemeral red arc may represent the moment of SAR arc birth associated with substorm particle injection, which is generally masked by bright dynamic aurorae.
  •  
2.
  • Herique, A., et al. (författare)
  • Direct observations of asteroid interior and regolith structure : Science measurement requirements
  • 2018
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 62:8, s. 2141-2162
  • Tidskriftsartikel (refereegranskat)abstract
    • Our knowledge of the internal structure of asteroids is, so far, indirect - relying entirely on inferences from remote sensing observations of the surface, and theoretical modeling of formation and evolution. What are the bulk properties of the regolith and deep interior? And what are the physical processes that shape asteroid internal structures? Is the composition and size distribution observed on the surface representative of the bulk? These questions are crucial to understand small bodies' history from accretion in the early Solar System to the present, and direct measurements are needed to answer these questions for the benefit of science as well as for planetary defense or exploration. Radar is one of the main instruments capable of sounding asteroids to characterize internal structure from sub-meter to global scale. In this paper, we review the science case for direct observation of the deep internal structure and regolith of a rocky asteroid of kilometer size or smaller. We establish the requirements and model dielectric properties of asteroids to outline a possible instrument suite, and highlight the capabilities of radar instrumentation to achieve these observations. We then review the expected science return including secondary objectives contributing to the determination of the gravitational field, the shape model, and the dynamical state. This work is largely inherited from MarcoPolo-R and AIDA/AIM studies.
  •  
3.
  • Miyoshi, Y., et al. (författare)
  • The energization and radiation in geospace (ERG) project
  • 2012
  • Ingår i: Dynamics of The Earth's Radiation Belts and Inner Magnetosphere. - : American Geophysical Union (AGU). - 9780875904894 ; , s. 103-116
  • Konferensbidrag (refereegranskat)abstract
    • The Energization and Radiation in Geospace (ERG) project for solar cycle 24 will explore how relativistic electrons in the radiation belts are generated during space storms. This geospace exploration project consists of three research teams: the ERG satellite observation team, the ground-based network observation team, and the integrated data analysis/simulation team. Satellite observation will provide in situ measurements of features such as the plasma distribution function, electric and magnetic fields, and plasma waves, whereas remote sensing by ground-based observations using, for example, HF radars, magnetometers, optical instruments, and radio wave receivers will provide the global state of the geospace. Various kinds of data will be integrated and compared with numerical simulations for quantitative understanding. Such a synergetic approach is essential for comprehensive understanding of relativistic electron generation/loss processes through crossenergy and cross-regional coupling in which different plasma populations and regions are dynamically coupled with each other. In addition, the ERG satellite will utilize a new and innovative measurement technique for wave-particle interactions that can directly measure the energy exchange process between particles and plasma waves. In this paper, we briefly review some of the profound problems regarding relativistic electron accelerations and losses that will be solved by the ERG project, and we provide an overview of the project.
  •  
4.
  • Karlsson, Tomas, 1964-, et al. (författare)
  • The MEFISTO and WPT Electric Field Sensors of the Plasma Wave Investigation on the BepiColombo Mio Spacecraft Measurements of Low and High Frequency Electric Fields at Mercury
  • 2020
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 216:8
  • Forskningsöversikt (refereegranskat)abstract
    • This paper describes the design of MEFISTO (Mercury Electric Field In-Situ Tool) and WPT (Wire Probe Antenna) electric field sensors for Plasma Wave Investigation (PWI) on the BepiColombo Mio spacecraft (Mercury Magnetospheric Orbiter, MMO). The two sensors will enable the first observations of electric fields, plasma waves and radio waves in and around the Hermean magnetosphere and exosphere. MEFISTO and WPT are dipole antennas with 31.6 m tip-to-tip length. Each antenna element has a spherical probe at each end of the wire (15 m length). They are extended orthogonally in the spin plane of the spacecraft and enable measurements of the electric field in the frequency range of DC to 10 MHz by the connection to two sets of receivers, EWO for a lower frequency range and SORBET for higher frequencies. In the initial operations after the launch (20 Oct. 2018), we succeeded to confirm the health of both antennas and to release the launch lock of the WPT. After Mercury orbit insertion planned at the end of 2025, both sensors will be fully deployed and activate full operations of the PWI electric field measurements.
  •  
5.
  • Kasaba, Y., et al. (författare)
  • The Plasma Wave Investigation (PWI) onboard the BepiColombo/MMO : First measurement of electric fields, electromagnetic waves, and radio waves around Mercury
  • 2010
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 58:1-2, s. 238-278
  • Tidskriftsartikel (refereegranskat)abstract
    • The BepiColombo Mercury Magnetospheric Orbiter (MMO) spacecraft includes the plasma and radio wave observation system called Plasma Wave Investigation (PWI). Since the receivers for electric field, plasma waves, and radio waves are not installed in any of the preceding spacecraft to Mercury, the PWI will provide the first opportunity for conducting in-situ and remote-sensing observations of electric fields, plasma waves, and radio waves in the Hermean magnetosphere and exosphere. These observations are valuable in studying structure, dynamics, and energy exchange processes in the unique magnetosphere of Mercury. They are characterized by the key words of the non-MHD environment and the peculiar interaction between the relatively large planet without ionosphere and the solar wind with high dynamic pressure. The PWI consists of three sets of receivers (EWO, SORBET, and AM(2)P), connected to two sets of electric field sensors (MEFISTO and WPT) and two kinds of magnetic field sensors (LF-SC and DB-SC). The PWI will observe both waveforms and frequency spectra in the frequency range from DC to 10 MHz for the electric field and from 0.3 Hz to 640kHz for the magnetic field. From 2008, we will start the development of the engineering model, which is conceptually consistent with the flight model design. The present paper discusses the significance and objectives of plasma/radio wave observations in the Hermean magnetosphere, and describes the PWI sensors, receivers and their performance as well as the onboard data processing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy