SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kumaniaev Ivan 1995 ) "

Sökning: WFRF:(Kumaniaev Ivan 1995 )

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adler, Anneli, et al. (författare)
  • Lignin-first biorefining of Nordic poplar to produce cellulose fibers could displace cotton production on agricultural lands
  • 2022
  • Ingår i: Joule. - : Elsevier BV. - 2542-4351. ; 6:8, s. 1845-1858
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we show that lignin-first biorefining of poplar can enable the production of dissolving cellulose pulp that can produce regenerated cellulose, which could substitute cotton. These results in turn indicate that agricultural land dedicated to cotton could be reclaimed for food production by extending poplar plantations to produce textile fibers. Based on climate-adapted poplar clones capable of growth on marginal lands in the Nordic region, we estimate an environmentally sustainable annual biomass production of ∼11 tonnes/ha. At scale, lignin-first biorefining of this poplar could annually generate 2.4 tonnes/ha of dissolving pulp for textiles and 1.1 m3 biofuels. Life cycle assessment indicates that, relative to cotton production, this approach could substantially reduce water consumption and identifies certain areas for further improvement. Overall, this work highlights a new value chain to reduce the environmental footprint of textiles, chemicals, and biofuels while enabling land reclamation and water savings from cotton back to food production.
  •  
2.
  • Kumaniaev, Ivan, 1995- (författare)
  • Fractionation of woody biomass : lignin and suberin in focus
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is dedicated to the research of fractionation and valorization of different types of woody biomass. In the first part, oak (Quercus suber) and birch (Betula pendula) barks are considered. Bark is the outer layer of wood and is treated as waste in the current wood processing technologies. The main polymers which form bark are lignin (aromatic polyether) and suberin (aliphatic polyester). In the present study, these compounds have been transformed into monomeric phenols which may serve as a precursors for bio-based polyesters, and hydrocarbon bio-oil of gasoline, diesel, and heavy gas oil ranges. The bio-oil has been studied with GC-MS, 2D GC, and simulated distillation techniques.   The second part concerns birch heartwood. In contrast with bark, wood does not contain suberin but has a higher content of lignin. A variety of fractionation processes are known for wood. The major disadvantages are contamination of pulp with catalyst and irreversible recondensation of lignin which takes place in harsh pulping conditions. For the purpose of solving these problems, a flow process has been developed in which the biomass and the catalyst are separated in time and space and the lignin is stabilized and cleaved into monomers immediately after its extraction. The process has been optimized to obtain monophenolic lignin-derived compounds, while the remaining cellulose pulp was enzymatically converted into glucose. Hemicellulose serves as a hydrogen donor for the lignin reduction, and therefore no external hydrogen source is required. The experimental work was complemented with a theoretical study of the process of lignin cleavage on the Pd surface. Computations under on the ReaxFF approach were used to model the successive steps of the adsorption of the molecules on the catalyst, their fragmentation, reactions, and desorption. The products obtained in the experiment have been also observed in this simulation.
  •  
3.
  • Witthayolankowit, Kuntawit, et al. (författare)
  • Use of a fully biobased and non-reprotoxic epoxy polymer and woven hemp fabric to prepare environmentally friendly composite materials with excellent physical properties
  • 2023
  • Ingår i: Composites Part B. - : Elsevier BV. - 1359-8368 .- 1879-1069. ; 258
  • Tidskriftsartikel (refereegranskat)abstract
    • In the future, materials will need to be biobased and produced sustainably without compromising mechanical properties. To date, in many cases, the advantages of the bio-origin of the raw material are overridden by the environmental impact of the process. In the present study, we have developed a novel composite material based on woven hemp fabric which reinforce a thermoset polymer produced from birch bark, a low-value forestry byproduct. Results show that this fully biobased composite has specific stiffness and strength equivalent to those of flax fibre-reinforced petroleum-based epoxy composites and slightly lower than glass fibre-reinforced petroleum-based epoxy composites. The sustainability of the material was also evaluated by life-cycle assessment from cradle to gate and showed significantly superior performance with respect to the potential global warming impact than commercial benchmark materials. Furthermore, toxicology studies showed no endocrine disruptive activities. This is an important proof of concept study demonstrating that biobased structural materials can be produced sustainably.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy