SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kumar Raghvendra) "

Sökning: WFRF:(Kumar Raghvendra)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sharma, Rohit, et al. (författare)
  • Analysis of Water Pollution Using Different Physicochemical Parameters : A Study of Yamuna River
  • 2020
  • Ingår i: Frontiers in Environmental Science. - USA : Frontiers Media S.A.. - 2296-665X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The Yamuna river has become one of the most polluted rivers in India as well as in the world because of the high-density population growth and speedy industrialization. The Yamuna river is severely polluted and needs urgent revival. The Yamuna river in Dehradun is polluted due to exceptional tourist activity, poor sewage facilities, and insufficient wastewater management amenities. The measurement of the quality can be done by water quality assessment. In this study, the water quality index has been calculated for the Yamuna river at Dehradun using monthly measurements of 12 physicochemical parameters. Trend forecasting for river water pollution has been performed using different parameters for the years 2020–2024 at Dehradun. The study shows that the values of four parameters namely, Temperature, Total Coliform, TDS, and Hardness are increasing yearly, whereas the values of pH and DO are not rising heavily. The considered physicochemical parameters for the study are TDS, Chlorides, Alkalinity, DO, Temperature, COD, BOD, pH, Magnesium, Hardness, Total Coliform, and Calcium. As per the results and trend analysis, the value of total coliform, temperature, and hardness are rising year by year, which is a matter of concern. The values of the considered physicochemical parameters have been monitored using various monitoring stations installed by the Central Pollution Control Board (CPCB), India.
  •  
2.
  • Nguyen, Phong Tung, et al. (författare)
  • Soft Computing Ensemble Models Based on Logistic Regression for Groundwater Potential Mapping
  • 2020
  • Ingår i: Applied Sciences. - Switzerland : MDPI. - 2076-3417. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater potential maps are one of the most important tools for the management of groundwater storage resources. In this study, we proposed four ensemble soft computing models based on logistic regression (LR) combined with the dagging (DLR), bagging (BLR), random subspace (RSSLR), and cascade generalization (CGLR) ensemble techniques for groundwater potential mapping in Dak Lak Province, Vietnam. A suite of well yield data and twelve geo-environmental factors (aspect, elevation, slope, curvature, Sediment Transport Index, Topographic Wetness Index, flow direction, rainfall, river density, soil, land use, and geology) were used for generating the training and validation datasets required for the building and validation of the models. Based on the area under the receiver operating characteristic curve (AUC) and several other validation methods (negative predictive value, positive predictive value, root mean square error, accuracy, sensitivity, specificity, and Kappa), it was revealed that all four ensemble learning techniques were successful in enhancing the validation performance of the base LR model. The ensemble DLR model (AUC = 0.77) was the most successful model in identifying the groundwater potential zones in the study area, followed by the RSSLR (AUC = 0.744), BLR (AUC = 0.735), CGLR (AUC = 0.715), and single LR model (AUC = 0.71), respectively. The models developed in this study and the resulting potential maps can assist decision-makers in the development of effective adaptive groundwater management plans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy