SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kunkel Thomas A) "

Sökning: WFRF:(Kunkel Thomas A)

  • Resultat 1-21 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Garbacz, Marta A., et al. (författare)
  • The absence of the catalytic domains of Saccharomyces cerevisiae DNA polymerase ϵ strongly reduces DNA replication fidelity
  • 2019
  • Ingår i: Nucleic Acids Research. - : Oxford University Press. - 0305-1048 .- 1362-4962. ; 47:8, s. 3986-3995
  • Tidskriftsartikel (refereegranskat)abstract
    • The four B-family DNA polymerases α, δ, ϵ and ζ cooperate to accurately replicate the eukaryotic nuclear genome. Here, we report that a Saccharomyces cerevisiae strain encoding the pol2-16 mutation that lacks Pol ϵ's polymerase and exonuclease activities has increased dNTP concentrations and an increased mutation rate at the CAN1 locus compared to wild type yeast. About half of this mutagenesis disappears upon deleting the REV3 gene encoding the catalytic subunit of Pol ζ. The remaining, still strong, mutator phenotype is synergistically elevated in an msh6Δ strain and has a mutation spectrum characteristic of mistakes made by Pol δ. The results support a model wherein slow-moving replication forks caused by the lack of Pol ϵ's catalytic domains result in greater involvement of mutagenic DNA synthesis by Pol ζ as well as diminished proofreading by Pol δ during replication.
  •  
2.
  • Nick McElhinny, Stephanie A, et al. (författare)
  • Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases.
  • 2010
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 107:11, s. 4949-4954
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of nucleoside triphosphate levels in Saccharomyces cerevisiae reveal that the four rNTPs are in 36- to 190-fold molar excess over their corresponding dNTPs. During DNA synthesis in vitro using the physiological nucleoside triphosphate concentrations, yeast DNA polymerase epsilon, which is implicated in leading strand replication, incorporates one rNMP for every 1,250 dNMPs. Pol delta and Pol alpha, which conduct lagging strand replication, incorporate one rNMP for every 5,000 or 625 dNMPs, respectively. Discrimination against rNMP incorporation varies widely, in some cases by more than 100-fold, depending on the identity of the base and the template sequence context in which it is located. Given estimates of the amount of replication catalyzed by Pols alpha, delta, and epsilon, the results are consistent with the possibility that more than 10,000 rNMPs may be incorporated into the nuclear genome during each round of replication in yeast. Thus, rNMPs may be the most common noncanonical nucleotides introduced into the eukaryotic genome. Potential beneficial and negative consequences of abundant ribonucleotide incorporation into DNA are discussed, including the possibility that unrepaired rNMPs in DNA could be problematic because yeast DNA polymerase epsilon has difficulty bypassing a single rNMP present within a DNA template.
  •  
3.
  • Nick McElhinny, Stephanie A, et al. (författare)
  • Genome instability due to ribonucleotide incorporation into DNA
  • 2010
  • Ingår i: Nature Chemical Biology. - : Springer Science and Business Media LLC. - 1552-4450 .- 1552-4469. ; 6:10, s. 774-81
  • Tidskriftsartikel (refereegranskat)abstract
    • Maintaining the chemical identity of DNA depends on ribonucleotide exclusion by DNA polymerases. However, ribonucleotide exclusion during DNA synthesis in vitro is imperfect. To determine whether ribonucleotides are incorporated during DNA replication in vivo, we substituted leucine or glycine for an active-site methionine in yeast DNA polymerase ϵ (Pol ϵ). Ribonucleotide incorporation in vitro was three-fold lower for M644L and 11-fold higher for M644G Pol ϵ compared to wild-type Pol ϵ. This hierarchy was recapitulated in vivo in yeast strains lacking RNase H2. Moreover, the pol2-M644G rnh201Δ strain progressed more slowly through S phase, had elevated dNTP pools and generated 2-5-base-pair deletions in repetitive sequences at a high rate and in a gene orientation-dependent manner. The data indicate that ribonucleotides are incorporated during replication in vivo, that they are removed by RNase H2-dependent repair and that defective repair results in replicative stress and genome instability via DNA strand misalignment.
  •  
4.
  • Orebaugh, Clinton D, et al. (författare)
  • Mapping Ribonucleotides Incorporated into DNA by Hydrolytic End-Sequencing.
  • 2018
  • Ingår i: Methods in molecular biology (Clifton, N.J.). - New York, NY : Springer New York. - 1940-6029. ; 1672, s. 329-345
  • Tidskriftsartikel (refereegranskat)abstract
    • Ribonucleotides embedded within DNA render the DNA sensitive to the formation of single-stranded breaks under alkali conditions. Here, we describe a next-generation sequencing method called hydrolytic end sequencing (HydEn-seq) to map ribonucleotides inserted into the genome of Saccharomyce cerevisiae strains deficient in ribonucleotide excision repair. We use this method to map several genomic features in wild-type and replicase variant yeast strains.
  •  
5.
  • Watt, Danielle L., et al. (författare)
  • Genome-wide analysis of the specificity and mechanisms of replication infidelity driven by imbalanced dNTP pools
  • 2016
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 44:4, s. 1669-1680
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The absolute and relative concentrations of the four dNTPs are key determinants of DNA replication fidelity, yet the consequences of altered dNTP pools on replication fidelity have not previously been investigated on a genome-wide scale. Here, we use deep sequencing to determine the types, rates and locations of uncorrected replication errors that accumulate in the nuclear genome of a mismatch repair-deficient diploid yeast strain with elevated dCTP and dTTP concentrations. These imbalanced dNTP pools promote replication errors in specific DNA sequence motifs suggesting increased misinsertion and increased mismatch extension at the expense of proofreading. Interestingly, substitution rates are similar for leading and lagging strand replication, but are higher in regions replicated late in S phase. Remarkably, the rate of single base deletions is preferentially increased in coding sequences and in short rather than long mononucleotides runs. Based on DNA sequence motifs, we propose two distinct mechanisms for generating single base deletions in vivo. Collectively, the results indicate that elevated dCTP and dTTP pools increase mismatch formation and decrease error correction across the nuclear genome, and most strongly increases mutation rates in coding and late replicating sequences.
  •  
6.
  • Williams, Jessica S, et al. (författare)
  • Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific
  • 2015
  • Ingår i: Nature Structural & Molecular Biology. - : Springer Science and Business Media LLC. - 1545-9993 .- 1545-9985. ; 22:4, s. 291-U35
  • Tidskriftsartikel (refereegranskat)abstract
    • Ribonucleotides incorporated during DNA replication are removed by RNase H2-dependent ribonucleotide excision repair (RER). In RER-defective yeast, topoisomerase 1 (Top1) incises DNA at unrepaired ribonucleotides, initiating their removal, but this is accompanied by RNA-DNA-damage phenotypes. Here we show that these phenotypes are incurred by a high level of ribonucleotides incorporated by a leading strand-replicase variant, DNA polymerase (Pol) ɛ, but not by orthologous variants of the lagging-strand replicases, Pols α or δ. Moreover, loss of both RNases H1 and H2 is lethal in combination with increased ribonucleotide incorporation by Pol ɛ but not by Pols α or δ. Several explanations for this asymmetry are considered, including the idea that Top1 incision at ribonucleotides relieves torsional stress in the nascent leading strand but not in the nascent lagging strand, in which preexisting nicks prevent the accumulation of superhelical tension.
  •  
7.
  • Williams, Jessica S, et al. (författare)
  • Proofreading of ribonucleotides inserted into DNA by yeast DNA polymerase ɛ.
  • 2012
  • Ingår i: DNA Repair. - : Elsevier BV. - 1568-7864 .- 1568-7856. ; 11:8, s. 649-656
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the ability of the 3' exonuclease activity of Saccharomyces cerevisiae DNA polymerase ɛ (Pol ɛ) to proofread newly inserted ribonucleotides (rNMPs). During DNA synthesis in vitro, Pol ɛ proofreads ribonucleotides with apparent efficiencies that vary from none at some locations to more than 90% at others, with rA and rU being more efficiently proofread than rC and rG. Previous studies show that failure to repair ribonucleotides in the genome of rnh201Δ strains that lack RNase H2 activity elevates the rate of short deletions in tandem repeat sequences. Here we show that this rate is increased by 2-4-fold in pol2-4 rnh201Δ strains that are also defective in Pol ɛ proofreading. In comparison, defective proofreading in these same strains increases the rate of base substitutions by more than 100-fold. Collectively, the results indicate that although proofreading of an 'incorrect' sugar is less efficient than is proofreading of an incorrect base, Pol ɛ does proofread newly inserted rNMPs to enhance genome stability.
  •  
8.
  • Williams, Jessica S., et al. (författare)
  • Topoisomerase 1-Mediated Removal of Ribonucleotides from Nascent Leading-Strand DNA
  • 2013
  • Ingår i: Molecular Cell. - : Cell Press. - 1097-2765 .- 1097-4164. ; 49:5, s. 1010-1015
  • Tidskriftsartikel (refereegranskat)abstract
    • RNase H2-dependent ribonucleotide excision repair (RER) removes ribonucleotides incorporated during DNA replication. When RER is defective, ribonucleotides in the nascent leading strand of the yeast genome are associated with replication stress and genome instability. Here, we provide evidence that topoisomerase 1 (Top1) initiates an independent form of repair to remove ribonucleotides from genomic DNA. This Top1-dependent process activates the S phase checkpoint. Deleting TOP1 reverses this checkpoint activation and also relieves replication stress and genome instability in RER-defective cells. The results reveal an additional removal pathway for a very common lesion in DNA, and they imply that the "dirty" DNA ends created when Top1 incises ribonucleotides in DNA are responsible for the adverse consequences of ribonucleotides in RNase H2-defective cells.
  •  
9.
  • Aksenova, Anna, et al. (författare)
  • Mismatch repair-independent increase in spontaneous mutagenesis in yeast lacking non-essential subunits of DNA polymerase ε
  • 2010
  • Ingår i: PLoS genetics. - : Public Library of Science. - 1553-7404. ; 6:11, s. e1001209-
  • Tidskriftsartikel (refereegranskat)abstract
    • Yeast DNA polymerase ε (Pol ε) is a highly accurate and processive enzyme that participates in nuclear DNA replication of the leading strand template. In addition to a large subunit (Pol2) harboring the polymerase and proofreading exonuclease active sites, Pol ε also has one essential subunit (Dpb2) and two smaller, non-essential subunits (Dpb3 and Dpb4) whose functions are not fully understood. To probe the functions of Dpb3 and Dpb4, here we investigate the consequences of their absence on the biochemical properties of Pol ε in vitro and on genome stability in vivo. The fidelity of DNA synthesis in vitro by purified Pol2/Dpb2, i.e. lacking Dpb3 and Dpb4, is comparable to the four-subunit Pol ε holoenzyme. Nonetheless, deletion of DPB3 and DPB4 elevates spontaneous frameshift and base substitution rates in vivo, to the same extent as the loss of Pol ε proofreading activity in a pol2-4 strain. In contrast to pol2-4, however, the dpb3Δdpb4Δ does not lead to a synergistic increase of mutation rates with defects in DNA mismatch repair. The increased mutation rate in dpb3Δdpb4Δ strains is partly dependent on REV3, as well as the proofreading capacity of Pol δ. Finally, biochemical studies demonstrate that the absence of Dpb3 and Dpb4 destabilizes the interaction between Pol ε and the template DNA during processive DNA synthesis and during processive 3' to 5'exonucleolytic degradation of DNA. Collectively, these data suggest a model wherein Dpb3 and Dpb4 do not directly influence replication fidelity per se, but rather contribute to normal replication fork progression. In their absence, a defective replisome may more frequently leave gaps on the leading strand that are eventually filled by Pol ζ or Pol δ, in a post-replication process that generates errors not corrected by the DNA mismatch repair system.
  •  
10.
  • Buckland, Robert J, et al. (författare)
  • Increased and Imbalanced dNTP Pools Symmetrically Promote Both Leading and Lagging Strand Replication Infidelity
  • 2014
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 10:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The fidelity of DNA replication requires an appropriate balance of dNTPs, yet the nascent leading and lagging strands of the nuclear genome are primarily synthesized by replicases that differ in subunit composition, protein partnerships and biochemical properties, including fidelity. These facts pose the question of whether imbalanced dNTP pools differentially influence leading and lagging strand replication fidelity. Here we test this possibility by examining strand-specific replication infidelity driven by a mutation in yeast ribonucleotide reductase, rnr1-Y285A, that leads to elevated dTTP and dCTP concentrations. The results for the CAN1 mutational reporter gene present in opposite orientations in the genome reveal that the rates, and surprisingly even the sequence contexts, of replication errors are remarkably similar for leading and lagging strand synthesis. Moreover, while many mismatches driven by the dNTP pool imbalance are efficiently corrected by mismatch repair, others are repaired less efficiently, especially those in sequence contexts suggesting reduced proofreading due to increased mismatch extension driven by the high dTTP and dCTP concentrations. Thus the two DNA strands of the nuclear genome are at similar risk of mutations resulting from this dNTP pool imbalance, and this risk is not completely suppressed even when both major replication error correction mechanisms are genetically intact.
  •  
11.
  •  
12.
  • Kumar, Dinesh, et al. (författare)
  • Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools
  • 2011
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 39:4, s. 1360-1371
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms by which imbalanced dNTPs induce mutations have been well characterized within a test tube, but not in vivo. We have examined mechanisms by which dNTP imbalances induce genome instability in strains of Saccharomyces cerevisiae with different amino acid substitutions in Rnr1, the large subunit of ribonucleotide reductase. These strains have different dNTP imbalances that correlate with elevated CAN1 mutation rates, with both substitution and insertion-deletion rates increasing by 10- to 300-fold. The locations of the mutations in a strain with elevated dTTP and dCTP are completely different from those in a strain with elevated dATP and dGTP. Thus, imbalanced dNTPs reduce genome stability in a manner that is highly dependent on the nature and degree of the imbalance. Mutagenesis is enhanced despite the availability of proofreading and mismatch repair. The mutations can be explained by imbalanced dNTP-induced increases in misinsertion, strand misalignment and mismatch extension at the expense of proofreading. This implies that the relative dNTP concentrations measured in extracts are truly available to a replication fork in vivo. An interesting mutational strand bias is observed in one rnr1 strain, suggesting that the S-phase checkpoint selectively prevents replication errors during leading strand replication.
  •  
13.
  •  
14.
  • Nürenberg, Gudrun, et al. (författare)
  • Nontarget analysis : A new tool for the evaluation of wastewater processes
  • 2019
  • Ingår i: Water Research. - : Elsevier BV. - 0043-1354. ; 163
  • Tidskriftsartikel (refereegranskat)abstract
    • Strategies to determine the removal efficiency of micropollutants in wastewater treatment plants (WWTPs) are widely discussed. Especially the evaluation of the potential benefit of further advanced treatment steps such as an additional tertiary treatment based on ozonation or activated carbon have come into focus. Such evaluation strategies are often based on the removal behavior of known micropollutants via target or suspected analysis. The utilization of nontarget analysis is considered to lead to a more comprehensive picture as also unknown or not expected micropollutants are analyzed. Here, the results of an evaluation via target and nontarget analysis were compared for biological treatment (BT) processes of eleven full-scale WWTPs and three different post-treatments (PTs): one sand filter (SF) and two granular activated carbon (GAC) filters. The similarity of the determined removals from target and nontarget analysis of the BTs increased significantly by excluding easily degradable “features” from the nontarget evaluation. A similar ranking of the removal trends for the BTs could also be achieved by comparing this new subset of nontarget features with a set of nine readily to moderately biodegradable micropollutants. This observation suggests that a performance ranking of BTs based either on target or nontarget analysis is plausible. In contrast to the BTs, the evaluation of the three PTs revealed that the difference of feature removal between SF and the two GACs was small, but large for the target analytes with substantially higher removal effciencies for the GACs compared to the SF. In addition to the removal behavior, the nontarget analysis provided further information about the number and quantity of transformation products (TPs) in the effluent from the BTs. For all BTs more than half (55–67%) of the features detected in the effluent were not found in the influent. A comparable proportion of TPs was also detected after GAC and sand filtration due to their microbial activities.
  •  
15.
  •  
16.
  • Pursell, Zachary F, et al. (författare)
  • Yeast DNA polymerase epsilon participates in leading-strand DNA replication.
  • 2007
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 317:5834, s. 127-130
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple DNA polymerases participate in replicating the leading and lagging strands of the eukaryotic nuclear genome. Although 50 years have passed since the first DNA polymerase was discovered, the identity of the major polymerase used for leading-strand replication is uncertain. We constructed a derivative of yeast DNA polymerase ϵ that retains high replication activity but has strongly reduced replication fidelity, particularly for thymine-deoxythymidine 5'-monophosphate (T-dTMP) but not adenine-deoxyadenosine 5'-monophosphate (A-dAMP) mismatches. Yeast strains with this DNA polymerase ϵ allele have elevated rates of T to A substitution mutations. The position and rate of these substitutions depend on the orientation of the mutational reporter and its location relative to origins of DNA replication and reveal a pattern indicating that DNA polymerase ϵ participates in leading-strand DNA replication.
  •  
17.
  •  
18.
  • Sparks, Justin L, et al. (författare)
  • RNase H2-Initiated Ribonucleotide Excision Repair
  • 2012
  • Ingår i: Molecular Cell. - : Elsevier BV. - 1097-2765 .- 1097-4164. ; 47:6, s. 980-986
  • Tidskriftsartikel (refereegranskat)abstract
    • Ribonucleotides are incorporated into DNA by the replicative DNA polymerases at frequencies of about 2 per kb, which makes them by far the most abundant form of potential DNA damage in the cell. Their removal is essential for restoring a stable intact chromosome. Here, we present a complete biochemical reconstitution of the ribonucleotide excision repair (RER) pathway with enzymes purified from Saccharomyces cerevisiae. RER is most efficient when the ribonucleotide is incised by RNase H2, and further excised by the flap endonuclease FEN1 with strand displacement synthesis carried out by DNA polymerase δ, the PCNA clamp, its loader RFC, and completed by DNA ligase I. We observed partial redundancy for several of the enzymes in this pathway. Exo1 substitutes for FEN1 and Pol ε for Pol δ with reasonable efficiency. However, RNase H1 fails to substitute for RNase H2 in the incision step of RER.
  •  
19.
  • Stone, Jana E, et al. (författare)
  • Lesion bypass by S. cerevisiae Pol ζ alone
  • 2011
  • Ingår i: DNA Repair. - : Elsevier. - 1568-7864 .- 1568-7856. ; 10:8, s. 826-834
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA polymerase zeta (Pol ζ) participates in translesion synthesis (TLS) of DNA adducts that stall replication fork progression. Previous studies have led to the suggestion that the primary role of Pol ζ in TLS is to extend primers created when another DNA polymerase inserts nucleotides opposite lesions. Here we test the non-exclusive possibility that Pol ζ can sometimes perform TLS in the absence of any other polymerase. To do so, we quantified the efficiency with which S. cerevisiae Pol ζ bypasses abasic sites, cis-syn cyclobutane pyrimidine dimers and (6-4) photoproducts. In reactions containing dNTP concentrations that mimic those induced by DNA damage, a Pol ζ derivative with phenylalanine substituted for leucine 979 at the polymerase active site bypasses all three lesions at efficiencies between 27 and 73%. Wild-type Pol ζ also bypasses these lesions, with efficiencies that are lower and depend on the sequence context in which the lesion resides. The results are consistent with the hypothesis that, in addition to extending aberrant termini created by other DNA polymerases, Pol ζ has the potential to be the sole DNA polymerase involved in TLS.
  •  
20.
  • Taylor, Jennifer, et al. (författare)
  • Sevoflurane dose and postoperative delirium: a prospective cohort analysis.
  • 2023
  • Ingår i: British journal of anaesthesia. - : Elsevier BV. - 1471-6771 .- 0007-0912. ; 130:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent trials are conflicting as to whether titration of anaesthetic dose using electroencephalography monitoring reduces postoperative delirium. Titration to anaesthetic dose itself might yield clearer conclusions. We analysed our observational cohort to clarify both dose ranges for trials of anaesthetic dose and biological plausibility of anaesthetic dose influencing delirium.We analysed the use of sevoflurane in an ongoing prospective cohort of non-intracranial surgery. Of 167 participants, 118 received sevoflurane and were aged >65 yr. We tested associations between age-adjusted median sevoflurane (AMS) minimum alveolar concentration fraction or area under the sevoflurane time×dose curve (AUC-S) and delirium severity (Delirium Rating Scale-98). Delirium incidence was measured with 3-minute Diagnostic Confusion Assessment Method (3D-CAM) or CAM-ICU. Associations with previously identified delirium biomarkers (interleukin-8, neurofilament light, total tau, or S100B) were tested.Delirium severity did not correlate with AMS (Spearman's ρ=-0.014, P=0.89) or AUC-S (ρ=0.093, P=0.35), nor did delirium incidence (AMS Wilcoxon P=0.86, AUC-S P=0.78). Further sensitivity analyses including propofol dose also demonstrated no relationship. Linear regression confirmed no association for AMS in unadjusted (log (IRR)=-0.06 P=0.645) or adjusted models (log (IRR)=-0.0454, P=0.735). No association was observed for AUC-S in unadjusted (log (IRR)=0.00, P=0.054) or adjusted models (log (IRR)=0.00, P=0.832). No association of anaesthetic dose with delirium biomarkers was identified (P>0.05).Sevoflurane dose was not associated with delirium severity or incidence. Other biological mechanisms of delirium, such as inflammation and neuronal injury, appear more plausible than dose of sevoflurane.NCT03124303, NCT01980511.
  •  
21.
  • Watt, Danielle L, et al. (författare)
  • Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases
  • 2011
  • Ingår i: DNA Repair. - : Elsevier BV. - 1568-7864 .- 1568-7856. ; 10:8, s. 897-902
  • Tidskriftsartikel (refereegranskat)abstract
    • The major replicative DNA polymerases of S. cerevisiae (Pols α, δ, and ɛ) incorporate substantial numbers of ribonucleotides into DNA during DNA synthesis. When these ribonucleotides are not removed in vivo, they reside in the template strand used for the next round of replication and could potentially reduce replication efficiency and fidelity. To examine if the presence of ribonucleotides in a DNA template impede DNA synthesis, we determined the efficiency with which Pols α, δ, and ɛ copy DNA templates containing a single ribonucleotide. All three polymerases can replicate past ribonucleotides. Relative to all-DNA templates, bypass of ribo-containing templates is slightly reduced, to extents that depend on the identity of the ribo and the sequence context in which it resides. Bypass efficiencies for Pols δ and ɛ were increased by increasing the dNTP concentrations to those induced by cellular stress, and in the case of Pol ɛ, by inactivating the 3'-exonuclease activity. Overall, ribonucleotide bypass efficiencies are comparable to, and usually exceed, those for the common oxidative stress-induced lesion 8-oxo-guanine.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-21 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy