SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuntsi J) "

Sökning: WFRF:(Kuntsi J)

  • Resultat 1-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Wierenga, Lara M., et al. (författare)
  • Greater male than female variability in regional brain structure across the lifespan
  • 2022
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 470-499
  • Tidskriftsartikel (refereegranskat)abstract
    • For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
  •  
6.
  •  
7.
  • Dima, Danai, et al. (författare)
  • Subcortical volumes across the lifespan : Data from 18,605 healthy individuals aged 3-90 years.
  • 2022
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 452-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
  •  
8.
  • Frangou, Sophia, et al. (författare)
  • Cortical thickness across the lifespan : Data from 17,075 healthy individuals aged 3-90 years
  • 2022
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 431-451
  • Tidskriftsartikel (refereegranskat)abstract
    • Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
  •  
9.
  •  
10.
  •  
11.
  • Ge, R, et al. (författare)
  • Normative Modeling of Brain Morphometry Across the Lifespan Using CentileBrain: Algorithm Benchmarking and Model Optimization
  • 2023
  • Ingår i: bioRxiv : the preprint server for biology. - : Cold Spring Harbor Laboratory.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background: Normative modeling is a statistical approach to quantify the degree to which a particular individual-level measure deviates from the pattern observed in a normative reference population. When applied to human brain morphometric measures it has the potential to inform about the significance of normative deviations for health and disease. Normative models can be implemented using a variety of algorithms that have not been systematically appraised. Methods: To address this gap, eight algorithms were compared in terms of performance and computational efficiency using brain regional morphometric data from 37,407 healthy individuals (53% female; aged 3-90 years) collated from 87 international MRI datasets. Performance was assessed with the mean absolute error (MAE) and computational efficiency was inferred from central processing unit (CPU) time. The algorithms evaluated were Ordinary Least Squares Regression (OLSR), Bayesian Linear Regression (BLR), Generalized Additive Models for Location, Scale, and Shape (GAMLSS), Parametric Lambda, Mu, Sigma (LMS), Gaussian Process Regression (GPR), Warped Bayesian Linear Regression (WBLG), Hierarchical Bayesian Regression (HBR), and Multivariable Fractional Polynomial Regression (MFPR). Model optimization involved testing nine covariate combinations pertaining to acquisition features, parcellation software versions, and global neuroimaging measures (i.e., total intracranial volume, mean cortical thickness, and mean cortical surface area). Findings: Statistical comparisons across models at PFDR<0.05 indicated that the MFPR-derived sex- and region-specific models with nonlinear polynomials for age and linear effects of global measures had superior predictive accuracy; the range of the MAE of the models of regional subcortical volumes was 70-520 mm3 and the corresponding ranges for regional cortical thickness and regional cortical surface area were 0.09-0.26 mm and 24-560 mm2, respectively. The MFPR-derived models were also computationally more efficient with a CPU time below one second compared to a range of 2 seconds to 60 minutes for the other algorithms. The performance of all sex- and region-specific MFPR models plateaued at sample sizes exceeding 3,000 and showed comparable MAEs across distinct 10-year age-bins covering the human lifespan. Interpretation: These results provide an empirically benchmarked framework for normative modeling of brain morphometry that is useful for interpreting prior literature and supporting future study designs. The model and tools described here are freely available through CentileBrain (https://centilebrain.org/), a user-friendly web platform.
  •  
12.
  •  
13.
  •  
14.
  • Merwood, A., et al. (författare)
  • Different heritabilities but shared etiological influences for parent, teacher and self-ratings of ADHD symptoms : an adolescent twin study
  • 2013
  • Ingår i: Psychological Medicine. - New York, USA : Cambridge University Press. - 0033-2917 .- 1469-8978. ; 43:9, s. 1973-1984
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Parent and teacher ratings of attention deficit hyperactivity disorder (ADHD) symptoms yield high estimates of heritability whereas self-ratings typically yield lower estimates. To understand why, the present study examined the etiological overlap between parent, teacher and self-ratings of ADHD symptoms in a population-based sample of 11-12-year-old twins. Method Participants were from the Twins Early Development Study (TEDS). ADHD symptoms were assessed using the Strengths and Difficulties Questionnaire (SDQ) hyperactivity scale completed by parents, teachers and children. Structural equation modeling was used to examine genetic and environmental contributions to phenotypic variance/covariance.Results: The broad-sense heritability of ADHD symptoms was 82% for parent ratings, 60% for teacher ratings and 48% for self-ratings. Post-hoc analyses revealed significantly higher heritability for same-teacher than different-teacher ratings of ADHD (76% v. 49%). A common pathway model best explained the relationship between different informant ratings, with common genetic influences accounting for 84% of the covariance between parent, teacher and self-rated ADHD symptoms. The remaining variance was explained by rater-specific genetic and non-shared environmental influences.Conclusions: Despite different heritabilities, there were shared genetic influences for parent, teacher and self-ratings of ADHD symptoms, indicating that different informants rated some of the same aspects of behavior. The low heritability estimated for self-ratings and different-teacher ratings may reflect increased measurement error when different informants rate each twin from a pair, and/or greater non-shared environmental influences. Future studies into the genetic influences on ADHD should incorporate informant data in addition to self-ratings to capture a pervasive, heritable component of ADHD symptomatology.
  •  
15.
  • Ribasés, M., et al. (författare)
  • Genetic Architecture of ADHD and Overlap With Other Psychiatric Disorders And Cognition-Related Phenotypes
  • 2023
  • Ingår i: Neuroscience and Biobehavioral Reviews. - : Pergamon Press. - 0149-7634 .- 1873-7528. ; 153
  • Forskningsöversikt (refereegranskat)abstract
    • Attention-deficit/hyperactivity disorder (ADHD) co-occurs with many other psychiatric disorders and traits. In this review, we summarize and interpret the existing literature on the genetic architecture of these comorbidities based on hypothesis-generating approaches. Quantitative genetic studies indicate that genetic factors play a substantial role in the observed co-occurrence of ADHD with many different disorders and traits. Molecular genetic correlations derived from genome-wide association studies and results of studies based on polygenic risk scores confirm the general pattern but provide effect estimates that are smaller than those from twin studies. The identification of the specific genetic variants and biological pathways underlying co-occurrence using genome-wide approaches is still in its infancy. The first analyses of causal inference using genetic data support causal relationships between ADHD and comorbid disorders, although bidirectional effects identified in some instances point to complex relationships. While several issues in the methodology and inferences from the results are still to be overcome, this review shows that the co-occurrence of ADHD with many psychiatric disorders and traits is genetically interpretable.
  •  
16.
  • Rovira, P, et al. (författare)
  • Shared genetic background between children and adults with attention deficit/hyperactivity disorder
  • 2020
  • Ingår i: Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. - : Springer Science and Business Media LLC. - 1740-634X .- 0893-133X. ; 45:10, s. 1617-1626
  • Tidskriftsartikel (refereegranskat)abstract
    • Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by age-inappropriate symptoms of inattention, impulsivity, and hyperactivity that persist into adulthood in the majority of the diagnosed children. Despite several risk factors during childhood predicting the persistence of ADHD symptoms into adulthood, the genetic architecture underlying the trajectory of ADHD over time is still unclear. We set out to study the contribution of common genetic variants to the risk for ADHD across the lifespan by conducting meta-analyses of genome-wide association studies on persistent ADHD in adults and ADHD in childhood separately and jointly, and by comparing the genetic background between them in a total sample of 17,149 cases and 32,411 controls. Our results show nine new independent loci and support a shared contribution of common genetic variants to ADHD in children and adults. No subgroup heterogeneity was observed among children, while this group consists of future remitting and persistent individuals. We report similar patterns of genetic correlation of ADHD with other ADHD-related datasets and different traits and disorders among adults, children, and when combining both groups. These findings confirm that persistent ADHD in adults is a neurodevelopmental disorder and extend the existing hypothesis of a shared genetic architecture underlying ADHD and different traits to a lifespan perspective.
  •  
17.
  • Denyer, Hayley, et al. (författare)
  • ADHD Remote Technology study of cardiometabolic risk factors and medication adherence (ART-CARMA) : a multi-centre prospective cohort study protocol
  • 2022
  • Ingår i: BMC Psychiatry. - : BioMed Central (BMC). - 1471-244X. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Emerging evidence points at substantial comorbidity between adult attention deficit hyperactivity disorder (ADHD) and cardiometabolic diseases, but our understanding of the comorbidity and how to manage cardiometabolic disease in adults with ADHD is limited. The ADHD Remote Technology study of cardiometabolic risk factors and medication adherence (ART-CARMA) project uses remote measurement technology to obtain real-world data from daily life to assess the extent to which ADHD medication treatment and physical activity, individually and jointly, may influence cardiometabolic risks in adults with ADHD. Our second main aim is to obtain valuable real-world data on adherence to pharmacological treatment and its predictors and correlates during daily life from adults with ADHD.METHODS: ART-CARMA is a multi-site prospective cohort study within the EU-funded collaboration 'TIMESPAN' (Management of chronic cardiometabolic disease and treatment discontinuity in adult ADHD patients) that will recruit 300 adults from adult ADHD waiting lists. The participants will be monitored remotely over a period of 12 months that starts from pre-treatment initiation. Passive monitoring, which involves the participants wearing a wrist-worn device (EmbracePlus) and downloading the RADAR-base Passive App and the Empatica Care App on their smartphone, provides ongoing data collection on a wide range of variables, such as physical activity, sleep, pulse rate (PR) and pulse rate variability (PRV), systolic peaks, electrodermal activity (EDA), oxygen saturation (SpO2), peripheral temperature, smartphone usage including social connectivity, and the environment (e.g. ambient noise, light levels, relative location). By combining data across these variables measured, processes such as physical activity, sleep, autonomic arousal, and indicators of cardiovascular health can be captured. Active remote monitoring involves the participant completing tasks using a smartphone app (such as completing clinical questionnaires or speech tasks), measuring their blood pressure and weight, or using a PC/laptop (cognitive tasks). The ART system is built on the RADAR-base mobile-health platform.DISCUSSION: The long-term goal is to use these data to improve the management of cardiometabolic disease in adults with ADHD, and to improve ADHD medication treatment adherence and the personalisation of treatment.
  •  
18.
  •  
19.
  • Franke, Barbara, et al. (författare)
  • Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan
  • 2018
  • Ingår i: European Neuropsychopharmacology. - : Elsevier. - 0924-977X .- 1873-7862. ; 28:10, s. 1059-1088
  • Forskningsöversikt (refereegranskat)abstract
    • Attention-deficit/hyperactivity disorder (ADHD) is highly heritable and the most common neurodevelopmental disorder in childhood. In recent decades, it has been appreciated that in a substantial number of cases the disorder does not remit in puberty, but persists into adulthood. Both in childhood and adulthood, ADHD is characterised by substantial comorbidity including substance use, depression, anxiety, and accidents. However, course and symptoms of the disorder and the comorbidities may fluctuate and change over time, and even age of onset in childhood has recently been questioned. Available evidence to date is poor and largely inconsistent with regard to the predictors of persistence versus remittance. Likewise, the development of comorbid disorders cannot be foreseen early on, hampering preventive measures. These facts call for a lifespan perspective on ADHD from childhood to old age. In this selective review, we summarise current knowledge of the long-term course of ADHD, with an emphasis on clinical symptom and cognitive trajectories, treatment effects over the lifespan, and the development of comorbidities. Also, we summarise current knowledge and important unresolved issues on biological factors underlying different ADHD trajectories. We conclude that a severe lack of knowledge on lifespan aspects in ADHD still exists for nearly every aspect reviewed. We encourage large-scale research efforts to overcome those knowledge gaps through appropriately granular longitudinal studies.
  •  
20.
  • Kittel-Schneider, Sarah, et al. (författare)
  • Non-mental diseases associated with ADHD across the lifespan : Fidgety Philipp and Pippi Longstocking at risk of multimorbidity?
  • 2022
  • Ingår i: Neuroscience and Biobehavioral Reviews. - : Pergamon Press. - 0149-7634 .- 1873-7528. ; 132, s. 1157-1180
  • Forskningsöversikt (refereegranskat)abstract
    • Several non-mental diseases seem to be associated with an increased risk of ADHD and ADHD seems to be associated with increased risk for non-mental diseases. The underlying trajectories leading to such brain-body co-occurrences are often unclear - are there direct causal relationships from one disorder to the other, or does the sharing of genetic and/or environmental risk factors lead to their occurring together more frequently or both? Our goal with this narrative review was to provide a conceptual synthesis of the associations between ADHD and non-mental disease across the lifespan. We discuss potential shared pathologic mechanisms and genetic background and treatments in co-occurring diseases. For those co-occurrences for which published studies with sufficient sample sizes exist, meta-analyses have been published by others and we discuss those in detail. We conclude that non-mental diseases are common in ADHD and vice versa and add to the disease burden of the patient across the lifespan. Insufficient attention to such co-occurring conditions may result in missed diagnoses and suboptimal treatment in the affected individuals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-20 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy