SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuo Li Yaung) "

Sökning: WFRF:(Kuo Li Yaung)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schuettpelz, Eric, et al. (författare)
  • A community-derived classification for extant lycophytes and ferns
  • 2016
  • Ingår i: Journal of Systematics and Evolution. - : Wiley. - 1674-4918 .- 1759-6831. ; 54:6, s. 563-603
  • Tidskriftsartikel (refereegranskat)abstract
    • Phylogeny has long informed pteridophyte classification. As our ability to infer evolutionary trees has improved, classifications aimed at recognizing natural groups have become increasingly predictive and stable. Here, we provide a modern, comprehensive classification for lycophytes and ferns, down to the genus level, utilizing a community-based approach. We use monophyly as the primary criterion for the recognition of taxa, but also aim to preserve existing taxa and circumscriptions that are both widely accepted and consistent with our understanding of pteridophyte phylogeny. In total, this classification treats an estimated 11 916 species in 337 genera, 51 families, 14 orders, and two classes. This classification is not intended as the final word on lycophyte and fern taxonomy, but rather a summary statement of current hypotheses, derived from the best available data and shaped by those most familiar with the plants in question. We hope that it will serve as a resource for those wanting references to the recent literature on pteridophyte phylogeny and classification, a framework for guiding future investigations, and a stimulus to further discourse.
  •  
2.
  •  
3.
  • Rothfels, Carl J., et al. (författare)
  • A revised family-level classification for eupolypod II ferns (Polypodiidae: Polypodiales)
  • 2012
  • Ingår i: Taxon. - 0040-0262 .- 1996-8175. ; 61:3, s. 515-533
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a family-level classification for the eupolypod II clade of leptosporangiate ferns, one of the two major lineages within the Eupolypods, and one of the few parts of the fern tree of life where family-level relationships were not well understood at the time of publication of the 2006 fern classification by Smith & al. Comprising over 2500 species, the composition and particularly the relationships among the major clades of this group have historically been contentious and defied phylogenetic resolution until very recently. Our classification reflects the most current available data, largely derived from published molecular phylogenetic studies. In comparison with the five-family (Aspleniaceae, Blechnaceae, Onocleaceae, Thelypteridaceae, Woodsiaceae) treatment of Smith & al., we recognize 10 families within the eupolypod II clade. Of these, Aspleniaceae, Thelypteridaceae, Blechnaceae, and Onocleaceae have the same composition as treated by Smith & al. Woodsiaceae, which Smith & al. acknowledged as possibly non-monophyletic in their treatment, is circumscribed here to include only Woodsia and its segregates; the other "woodsioid" taxa are divided among Athyriaceae, Cystopteridaceae, Diplaziopsidaceae, Rhachidosoraceae, and Hemidictyaceae. We provide circumscriptions for each family, which summarize their morphological, geographical, and ecological characters, as well as a dichotomous key to the eupolypod II families. Three of these families-Diplaziopsidaceae, Hemidictyaceae, and Rhachidosoraceae-were described in the past year based on molecular phylogenetic analyses; we provide here their first morphological treatment.
  •  
4.
  • Rothfels, Carl J., et al. (författare)
  • Overcoming Deep Roots, Fast Rates, and Short Internodes to Resolve the Ancient Rapid Radiation of Eupolypod II Ferns
  • 2012
  • Ingår i: Systematic Biology. - : Oxford University Press (OUP). - 1063-5157 .- 1076-836X. ; 61:3, s. 490-509
  • Tidskriftsartikel (refereegranskat)abstract
    • Backbone relationships within the large eupolypod II clade, which includes nearly a third of extant fern species, have resisted elucidation by both molecular and morphological data. Earlier studies suggest that much of the phylogenetic intractability of this group is due to three factors: (i) a long root that reduces apparent levels of support in the ingroup; (ii) long ingroup branches subtended by a series of very short backbone internodes (the "ancient rapid radiation" model); and (iii) significantly heterogeneous lineage-specific rates of substitution. To resolve the eupolypod II phylogeny, with a particular emphasis on the backbone internodes, we assembled a data set of five plastid loci (atpA, atpB, matK, rbcL, and trnG-R) from a sample of 81 accessions selected to capture the deepest divergences in the clade. We then evaluated our phylogenetic hypothesis against potential confounding factors, including those induced by rooting, ancient rapid radiation, rate heterogeneity, and the Bayesian star-tree paradox artifact. While the strong support we inferred for the backbone relationships proved robust to these potential problems, their investigation revealed unexpected model-mediated impacts of outgroup composition, divergent effects of methods for countering the star-tree paradox artifact, and gave no support to concerns about the applicability of the unrooted model to data sets with heterogeneous lineage-specific rates of substitution. This study is among few to investigate these factors with empirical data, and the first to compare the performance of the two primary methods for overcoming the Bayesian star-tree paradox artifact. Among the significant phylogenetic results is the near-complete support along the eupolypod II backbone, the demonstrated paraphyly of Woodsiaceae as currently circumscribed, and the well-supported placement of the enigmatic genera Homalosorus, Diplaziopsis, and Woodsia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy