SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kutter C) "

Sökning: WFRF:(Kutter C)

  • Resultat 1-31 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abe, K., et al. (författare)
  • J-PARC Neutrino Beamline Upgrade Technical Design Report
  • 2019
  • Rapport (refereegranskat)abstract
    • In this document, technical details of the upgrade plan of the J-PARC neutrino beamline for the extension of the T2K experiment are described. T2K has proposed to accumulate data corresponding to 2×1022 protons-on-target in the next decade, aiming at an initial observation of CP violation with 3σ or higher significance in the case of maximal CP violation. Methods to increase the neutrino beam intensity, which are necessary to achieve the proposed data increase, are described.
  •  
2.
  •  
3.
  • Morgantini, C., et al. (författare)
  • Liver macrophages regulate systemic metabolism through non-inflammatory factors
  • 2019
  • Ingår i: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 1:4, s. 445-459
  • Tidskriftsartikel (refereegranskat)abstract
    • Liver macrophages (LMs) have been proposed to contribute to metabolic disease through secretion of inflammatory cytokines. However, anti-inflammatory drugs lead to only modest improvements in systemic metabolism. Here we show that LMs do not undergo a proinflammatory phenotypic switch in obesity-induced insulin resistance in flies, mice and humans. Instead, we find that LMs produce non-inflammatory factors, such as insulin-like growth factor-binding protein 7 (IGFBP7), that directly regulate liver metabolism. IGFBP7 binds to the insulin receptor and induces lipogenesis and gluconeogenesis via activation of extracellular-signal-regulated kinase (ERK) signalling. We further show that IGFBP7 is subject to RNA editing at a higher frequency in insulin-resistant than in insulin-sensitive obese patients (90% versus 30%, respectively), resulting in an IGFBP7 isoform with potentially higher capacity to bind to the insulin receptor. Our study demonstrates that LMs can contribute to insulin resistance independently of their inflammatory status and indicates that non-inflammatory factors produced by macrophages might represent new drug targets for the treatment of metabolic diseases.
  •  
4.
  •  
5.
  •  
6.
  • Blondel, A., et al. (författare)
  • The SuperFGD Prototype charged particle beam tests
  • 2020
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 15:12
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel scintillator detector, the SuperFGD, has been selected as the main neutrino target for an upgrade of the T2K experiment ND280 near detector. The detector design will allow nearly 47r coverage for neutrino interactions at the near detector and will provide lower energy thresholds, significantly reducing systematic errors for the experiment. The SuperFGD is made of optically-isolated scintillator cubes of size 10 x 10 x 10 mm(3), providing the required spatial and energy resolution to reduce systematic uncertainties for future T2K runs. The SuperFGD for T2K will have close to two million cubes in a 1920 x 560 x 1840 mm(3) volume. A prototype made of 24 x 8 x 48 cubes was tested at a charged particle beamline at the CERN PS facility. The SuperFGD Prototype was instrumented with readout electronics similar to the future implementation for T2K. Results on electronics and detector response are reported in this paper, along with a discussion of the 3D reconstruction capabilities of this type of detector. Several physics analyses with the prototype data are also discussed, including a study of stopping protons.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Ernst, C, et al. (författare)
  • The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity
  • 2017
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:1, s. 1411-
  • Tidskriftsartikel (refereegranskat)abstract
    • Transposable elements (TEs) contribute to the large amount of repetitive sequences in mammalian genomes and have been linked to species-specific genome innovations by rewiring regulatory circuitries. However, organisms need to restrict TE activity to ensure genome integrity, especially in germline cells to protect the transmission of genetic information to the next generation. This review features our current understandings of mammalian PIWI-interacting RNAs (piRNAs) and their role in TE regulation in spermatogenesis. Here we discuss functional implication and explore additional molecular mechanisms that inhibit transposon activity and altogether illustrate the paradoxical arms race between genome evolution and stability.
  •  
11.
  •  
12.
  • Johansson, H, et al. (författare)
  • Chenodeoxycholic Acid Modulates Bile Acid Synthesis Independent of Fibroblast Growth Factor 19 in Primary Human Hepatocytes
  • 2021
  • Ingår i: Frontiers in endocrinology. - : Frontiers Media SA. - 1664-2392. ; 11, s. 554922-
  • Tidskriftsartikel (refereegranskat)abstract
    • Bile acids (BAs) are detergents essential for intestinal absorption of lipids. Disruption of BA homeostasis can lead to severe liver damage. BA metabolism is therefore under strict regulation by sophisticated feedback mechanisms. The hormone-like protein Fibroblast growth factor 19 (FGF19) is essential for maintaining BA homeostasis by down regulating BA synthesis. Here, the impact of both FGF19 and chenodeoxycholic acid (CDCA) on primary human hepatocytes was investigated and a possible autocrine/paracrine function of FGF19 in regulation of BA synthesis evaluated. Primary human hepatocytes were treated with CDCA, recombinant FGF19 or conditioned medium containing endogenously produced FGF19. RNA sequencing revealed that treatment with CDCA causes deregulation of transcripts involved in BA metabolism, whereas treatment with FGF19 had minor effects. CDCA increased FGF19 mRNA expression within 1 h. We detected secretion of the resulting FGF19 protein into medium, mimicking in vivo observations. Furthermore, medium enriched with endogenously produced FGF19 reduced BA synthesis by down regulating CYP7A1 gene expression. However, following knockdown of FGF19, CDCA still independently decreased BA synthesis, presumably through the regulatory protein small heterodimer partner (SHP). In summary, we show that in primary human hepatocytes CDCA regulates BA synthesis in an FGF19-independent manner.
  •  
13.
  • Savva, C, et al. (författare)
  • Obese mother offspring have hepatic lipidic modulation that contributes to sex-dependent metabolic adaptation later in life
  • 2021
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 4:1, s. 14-
  • Tidskriftsartikel (refereegranskat)abstract
    • With the increasing prevalence of obesity in women of reproductive age, there is an urgent need to understand the metabolic impact on the fetus. Sex-related susceptibility to liver diseases has been demonstrated but the underlying mechanism remains unclear. Here we report that maternal obesity impacts lipid metabolism differently in female and male offspring. Males, but not females, gained more weight and had impaired insulin sensitivity when born from obese mothers compared to control. Although lipid mass was similar in the livers of female and male offspring, sex-specific modifications in the composition of fatty acids, triglycerides and phospholipids was observed. These overall changes could be linked to sex-specific regulation of genes controlling metabolic pathways. Our findings revised the current assumption that sex-dependent susceptibility to metabolic disorders is caused by sex-specific postnatal regulation and instead we provide molecular evidence supporting in utero metabolic adaptations in the offspring of obese mothers.
  •  
14.
  •  
15.
  • Sommerauer, C, et al. (författare)
  • Noncoding RNAs and RNA-binding proteins: emerging governors of liver physiology and metabolic diseases
  • 2022
  • Ingår i: American journal of physiology. Cell physiology. - : American Physiological Society. - 1522-1563 .- 0363-6143. ; 323:4, s. C1003-C1017
  • Tidskriftsartikel (refereegranskat)abstract
    • The liver holds central roles in detoxification, energy metabolism, and whole body homeostasis but can develop malignant phenotypes when being chronically overwhelmed with fatty acids and glucose. The global rise of metabolic dysfunction-associated fatty liver disease (MAFLD) is already affecting a quarter of the global population. Pharmaceutical treatment options against different stages of MAFLD do not yet exist, and several clinical trials against hepatic transcription factors and other proteins have failed. However, emerging roles of noncoding RNAs, including long (lncRNA) and short noncoding RNAs (sRNA), in various cellular processes pose exciting new avenues for treatment interventions. Actions of noncoding RNAs mostly rely on interactions with proteins, whereby the noncoding RNA fine-tunes protein function in a process termed riboregulation. The developmental stage-, disease stage-, and cell type-specific nature of noncoding RNAs harbors enormous potential to precisely target certain cellular pathways in a spatiotemporally defined manner. Proteins interacting with RNAs can be categorized into canonical or noncanonical RNA-binding proteins (RBPs) depending on the existence of classical RNA-binding domains. Both, RNA- and RBP-centric methods have generated new knowledge of the RNA-RBP interface and added an additional regulatory layer. In this review, we summarize recent advances in how RBP-lncRNA interactions and various sRNAs shape cellular physiology and the development of liver diseases such as MAFLD and hepatocellular carcinoma.
  •  
16.
  • Sondergaard, JN, et al. (författare)
  • CCT3-LINC00326 axis regulates hepatocarcinogenic lipid metabolism
  • 2022
  • Ingår i: Gut. - : BMJ. - 1468-3288 .- 0017-5749. ; 71:10, s. 2081-2092
  • Tidskriftsartikel (refereegranskat)abstract
    • To better comprehend transcriptional phenotypes of cancer cells, we globally characterised RNA-binding proteins (RBPs) to identify altered RNAs, including long non-coding RNAs (lncRNAs).DesignTo unravel RBP-lncRNA interactions in cancer, we curated a list of ~2300 highly expressed RBPs in human cells, tested effects of RBPs and lncRNAs on patient survival in multiple cohorts, altered expression levels, integrated various sequencing, molecular and cell-based data.ResultsHigh expression of RBPs negatively affected patient survival in 21 cancer types, especially hepatocellular carcinoma (HCC). After knockdown of the top 10 upregulated RBPs and subsequent transcriptome analysis, we identified 88 differentially expressed lncRNAs, including 34 novel transcripts. CRISPRa-mediated overexpression of four lncRNAs had major effects on the HCC cell phenotype and transcriptome. Further investigation of four RBP-lncRNA pairs revealed involvement in distinct regulatory processes. The most noticeable RBP-lncRNA connection affected lipid metabolism, whereby the non-canonical RBP CCT3 regulated LINC00326 in a chaperonin-independent manner. Perturbation of the CCT3-LINC00326 regulatory network led to decreased lipid accumulation and increased lipid degradation in cellulo as well as diminished tumour growth in vivo.ConclusionsWe revealed that RBP gene expression is perturbed in HCC and identified that RBPs exerted additional functions beyond their tasks under normal physiological conditions, which can be stimulated or intensified via lncRNAs and affected tumour growth.
  •  
17.
  • Sondergaard, JN, et al. (författare)
  • Successful delivery of large-size CRISPR/Cas9 vectors in hard-to-transfect human cells using small plasmids
  • 2020
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1, s. 319-
  • Tidskriftsartikel (refereegranskat)abstract
    • With the rise of new powerful genome engineering technologies, such as CRISPR/Cas9, cell models can be engineered effectively to accelerate basic and disease research. The most critical step in this procedure is the efficient delivery of foreign nucleic acids into cells by cellular transfection. Since the vectors encoding the components necessary for CRISPR/Cas genome engineering are always large (9–19 kb), they result in low transfection efficiency and cell viability, and thus subsequent selection or purification of positive cells is required. To overcome those obstacles, we here show a non-toxic and non-viral delivery method that increases transfection efficiency (up to 40-fold) and cell viability (up to 6-fold) in a number of hard-to-transfect human cancer cell lines and primary blood cells. At its core, the technique is based on adding exogenous small plasmids of a defined size to the transfection mixture.
  •  
18.
  •  
19.
  •  
20.
  • Bose, I., et al. (författare)
  • An integrated all foil based micro device for point of care diagnostic applications
  • 2018
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier B.V.. - 0925-4005 .- 1873-3077. ; 259, s. 917-925
  • Tidskriftsartikel (refereegranskat)abstract
    • Point-of-Care (POC) diagnostics often fail to meet the market requirements of low cost and advanced functionality, and are often limited to lateral flow based serological diagnostics with reduced sensitivity and specificity. We report here on an integrated microfluidic absorbance measurement device fabricated by roll-to-roll (R2R) compatible manufacturing processes, suitable for low cost POC systems. It is a device exclusively made of foils and takes external light from a low cost LED and converts the point light source to a homogeneous light via a foil based optical filter at the bottom of the device. The light is converted to an electrical signal by an amorphous organic semiconductor (OSC) material, integrated with screen-printed carbon finger on top of the device for electrical measurement. As a proof of principle, we demonstrate DNA hybridization assay, where the target DNA is coupled to magnetic beads for absorbance measurement. The device successfully distinguishes between matched and mismatched DNA hybridization and can differentiate between 1 μM, 50 nM and 2.5 nM DNA target concentrations. The inherent characteristics of the substrates and R2R fabrication concept significantly reduce the cost, making it suitable for POC applications at resource-limited settings. 
  •  
21.
  •  
22.
  • Gao, W, et al. (författare)
  • Cell type-specific analysis by single-cell profiling identifies a stable mammalian tRNA-mRNA interface and increased translation efficiency in neurons
  • 2022
  • Ingår i: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 32:1, s. 97-110
  • Tidskriftsartikel (refereegranskat)abstract
    • The correlation between codon and anticodon pools influences the efficiency of translation, but whether differences exist in these pools across individual cells is unknown. We determined that codon usage and amino acid demand are highly stable across different cell types using available mouse and human single-cell RNA-sequencing atlases. After showing the robustness of ATAC-sequencing measurements for the analysis of tRNA gene usage, we quantified anticodon usage and amino acid supply in both mouse and human single-cell ATAC-seq atlases. We found that tRNA gene usage is overall coordinated across cell types, except in neurons, which clustered separately from other cell types. Integration of these data sets revealed a strong and statistically significant correlation between amino acid supply and demand across almost all cell types. Neurons have an enhanced translation efficiency over other cell types, driven by an increased supply of tRNAAla (AGC) anticodons. This results in faster decoding of the Ala-GCC codon, as determined by cell type–specific ribosome profiling, suggesting that the reduction of tRNAAla (AGC) anticodon pools may be implicated in neurological pathologies. This study, the first such examination of codon usage, anticodon usage, and translation efficiency resolved at the cell-type level with single-cell information, identifies a conserved landscape of translation elongation across mammalian cellular diversity and evolution.
  •  
23.
  • Gao, W, et al. (författare)
  • Cell type-specific analysis by single-cell profiling identifies a stable mammalian tRNA-mRNA interface and increased translation efficiency in neurons
  • 2022
  • Ingår i: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 32:1, s. 97-110
  • Tidskriftsartikel (refereegranskat)abstract
    • The correlation between codon and anticodon pools influences the efficiency of translation, but whether differences exist in these pools across individual cells is unknown. We determined that codon usage and amino acid demand are highly stable across different cell types using available mouse and human single-cell RNA-sequencing atlases. After showing the robustness of ATAC-sequencing measurements for the analysis of tRNA gene usage, we quantified anticodon usage and amino acid supply in both mouse and human single-cell ATAC-seq atlases. We found that tRNA gene usage is overall coordinated across cell types, except in neurons, which clustered separately from other cell types. Integration of these data sets revealed a strong and statistically significant correlation between amino acid supply and demand across almost all cell types. Neurons have an enhanced translation efficiency over other cell types, driven by an increased supply of tRNAAla (AGC) anticodons. This results in faster decoding of the Ala-GCC codon, as determined by cell type–specific ribosome profiling, suggesting that the reduction of tRNAAla (AGC) anticodon pools may be implicated in neurological pathologies. This study, the first such examination of codon usage, anticodon usage, and translation efficiency resolved at the cell-type level with single-cell information, identifies a conserved landscape of translation elongation across mammalian cellular diversity and evolution.
  •  
24.
  •  
25.
  • Geng, KY, et al. (författare)
  • Target-enriched nanopore sequencing and de novo assembly reveals co-occurrences of complex on-target genomic rearrangements induced by CRISPR-Cas9 in human cells
  • 2022
  • Ingår i: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 32:10, s. 1876-1891
  • Tidskriftsartikel (refereegranskat)abstract
    • The CRISPR-Cas9 system is widely used to permanently delete genomic regions via dual guide RNAs. Genomic rearrangements induced by CRISPR-Cas9 can occur, but continuous technical developments make it possible to characterize complex on-target effects. We combined an innovative droplet-based target enrichment approach with long-read sequencing and coupled it to a customized de novo sequence assembly. This approach enabled us to dissect the sequence content at kilobase scale within an on-target genomic locus. We here describe extensive genomic disruptions by Cas9, involving the allelic co-occurrence of a genomic duplication and inversion of the target region, as well as integrations of exogenous DNA and clustered interchromosomal DNA fragment rearrangements. Furthermore, we found that these genomic alterations led to functional aberrant DNA fragments and can alter cell proliferation. Our findings broaden the consequential spectrum of the Cas9 deletion system, reinforce the necessity of meticulous genomic validations, and introduce a data-driven workflow enabling detailed dissection of the on-target sequence content with superior resolution.
  •  
26.
  •  
27.
  •  
28.
  • Kutter, C, et al. (författare)
  • Bridging gaps in transposable element research with single-molecule and single-cell technologies
  • 2018
  • Ingår i: Mobile DNA. - : Springer Science and Business Media LLC. - 1759-8753. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • More than half of the genomic landscape in humans and many other organisms is composed of repetitive DNA, which mostly derives from transposable elements (TEs) and viruses. Recent technological advances permit improved assessment of the repetitive content across genomes and newly developed molecular assays have revealed important roles of TEs and viruses in host genome evolution and organization. To update on our current understanding of TE biology and to promote new interdisciplinary strategies for the TE research community, leading experts gathered for the 2nd Uppsala Transposon Symposium on October 4–5, 2018 in Uppsala, Sweden. Using cutting-edge single-molecule and single-cell approaches, research on TEs and other repeats has entered a new era in biological and biomedical research.
  •  
29.
  • Ohlander, Anna, et al. (författare)
  • Staphylococcus aureus sub-typing and detection of MRSA on a microfluidic lab-on-foil device
  • 2018
  • Ingår i: 22nd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2018. - : Chemical and Biological Microsystems Society. - 9781510897571 ; , s. 1835-1838
  • Konferensbidrag (refereegranskat)abstract
    • Emerging antibiotic multi-resistance, increased travel and trade, and environmental changes have contributed to the prevalence of infectious diseases and rapid changes in the efficiency of therapeutics. We report detection of multi-resistant Staphylococus aureus and S. aureus strain sub-types using a microfluidic detection module with integrated thin film heater and DNA microarray, which enables surface-bound melting curve analysis. Successful discrimination between clinical S. aureus strain sub-types and between methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) was demonstrated. The microfluidic detection module is constructed completely on a plastic foil using roll-to-roll compatible fabrication methods that yield a very low-cost system. Copyright 
  •  
30.
  •  
31.
  • Sticker, D., et al. (författare)
  • Using oxygen-consuming thermoset plastics to generate hypoxic conditions in microfluidic devices for potential cell culture applications
  • 2020
  • Ingår i: 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2017. - : Chemical and Biological Microsystems Society. ; , s. 812-813
  • Konferensbidrag (refereegranskat)abstract
    • The precise control of the oxygen concentration in a cellular environment allows the study of cells under physiologically relevant conditions. This work reports on a novel method for the generation of reduced dissolved oxygen concentrations in microfluidic chambers for cell- and organ-on-chip applications. Using a thermoset polymeric material (OSTEMERTM), which effectively scavenges dissolved oxygen (DO), microfluidic devices have been fabricated where oxygen was rapidly depleted from the microfluidic chamber. It is shown that hypoxic and anaerobic conditions can be generated through the inherent scavenging property of the material itself, without any additional chemical additives. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-31 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy