SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuwae Asaomi) "

Sökning: WFRF:(Kuwae Asaomi)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engman, Jakob, et al. (författare)
  • Neisseria meningitidis Polynucleotide Phosphorylase Affects Aggregation, Adhesion, and Virulence
  • 2016
  • Ingår i: Infection and Immunity. - 0019-9567 .- 1098-5522. ; 84:5, s. 1501-1513
  • Tidskriftsartikel (refereegranskat)abstract
    • Neisseria meningitidis autoaggregation is an important step during attachment to human cells. Aggregation is mediated by type IV pili and can be modulated by accessory pilus proteins, such as PilX, and posttranslational modifications of the major pilus subunit PilE. The mechanisms underlying the regulation of aggregation remain poorly characterized. Polynucleotide phosphorylase ( PNPase) is a 3'-5' exonuclease that is involved in RNA turnover and the regulation of small RNAs. In this study, we biochemically confirm that NMC0710 is the N. meningitidis PNPase, and we characterize its role in N. meningitidis pathogenesis. We show that deletion of the gene encoding PNPase leads to hyperaggregation and increased adhesion to epithelial cells. The aggregation induced was found to be dependent on pili and to be mediated by excessive pilus bundling. PNPase expression was induced following bacterial attachment to human cells. Deletion of PNPase led to global transcriptional changes and the differential regulation of 469 genes. We also demonstrate that PNPase is required for full virulence in an in vivo model of N. meningitidis infection. The present study shows that PNPase negatively affects aggregation, adhesion, and virulence in N. meningitidis.
  •  
2.
  • Kuwae, Asaomi, et al. (författare)
  • NafA negatively controls Neisseria meningitidis piliation
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:7, s. e21749-
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial auto-aggregation is a critical step during adhesion of N. meningitidis to host cells. The precise mechanisms and functions of bacterial auto-aggregation still remain to be fully elucidated. In this work, we characterize the role of a meningococcal hypothetical protein, NMB0995/NMC0982, and show that this protein, here denoted NafA, acts as an anti-aggregation factor. NafA was confirmed to be surface exposed and was found to be induced at a late stage of bacterial adherence to epithelial cells. A NafA deficient mutant was hyperpiliated and formed bundles of pili. Further, the mutant displayed increased adherence to epithelial cells when compared to the wild-type strain. In the absence of host cells, the NafA deficient mutant was more aggregative than the wild-type strain. The in vivo role of NafA in sepsis was studied in a murine model of meningococcal disease. Challenge with the NafA deficient mutant resulted in lower bacteremia levels and mortality when compared to the wild-type strain. The present study reveals that meningococcal NafA is an anti-aggregation factor with strong impact on the disease outcome. These data also suggest that appropriate bacterial auto-aggregation is controlled by both aggregation and anti-aggregation factors during Neisseria infection in vivo.
  •  
3.
  • Liu, Yan, et al. (författare)
  • Dynamic niche-specific adaptations in Neisseria meningitidis during infection
  • 2016
  • Ingår i: Microbes and infection. - : Elsevier BV. - 1286-4579 .- 1769-714X. ; 18:2, s. 109-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Neisseria meningitidis is an opportunistic human pathogen that usually colonizes the nasopharyngeal mucosa asymptomatically. Upon invasion into the blood and central nervous system, this bacterium triggers a fulminant inflammatory reaction with the manifestations of septicemia and meningitis, causing high morbidity and mortality. To reveal the bacterial adaptations to specific and dynamic host environments, we performed a comprehensive proteomic survey of N. meningitidis isolated from the nasal mucosa, CSF and blood of a mouse disease model. We could identify 51 proteins whose expression pattern has been changed during infection, many of which have not yet been characterized. The abundance of proteins was markedly lower in the bacteria isolated from the nasal mucosa compared to the bacteria from the blood and CSF, indicating that initiating adhesion is the harshest challenge for meningococci. The high abundance of the glutamate dehydrogenase (GdhA) and Opa1800 proteins in all bacterial isolates suggests their essential role in bacterial survival in vivo. To evaluate the biological relevance of our proteomic findings, four candidate proteins from representative functional groups, such as the bacterial chaperone GroEL, IMP dehydrogenase GuaB, and membrane proteins PilQ and NMC0101, were selected and their impact on bacterial fitness was investigated by mutagenesis assays. This study provides an integrated picture of bacterial niche-specific adaptations during consecutive infection processes.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy