SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(L'Huillier A.) "

Sökning: WFRF:(L'Huillier A.)

  • Resultat 1-50 av 113
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adrian-Martinez, S., et al. (författare)
  • A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007
  • 2013
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :6
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.
  •  
2.
  • Evans, P. A., et al. (författare)
  • Swift Follow-up Observations of Candidate Gravitational-wave Transient Events
  • 2012
  • Ingår i: The Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 203:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors (within less than 10 minutes) and their candidate sky locations were observed by the Swift observatory (within 12 hr). Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge." With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime, multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.
  •  
3.
  • Aasi, J., et al. (författare)
  • The characterization of Virgo data and its impact on gravitational-wave searches
  • 2012
  • Ingår i: Classical and Quantum Gravity. - : IOP Publishing. - 1361-6382 .- 0264-9381. ; 29:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Between 2007 and 2010 Virgo collected data in coincidence with the LIGO and GEO gravitational-wave (GW) detectors. These data have been searched for GWs emitted by cataclysmic phenomena in the universe, by non-axisymmetric rotating neutron stars or from a stochastic background in the frequency band of the detectors. The sensitivity of GW searches is limited by noise produced by the detector or its environment. It is therefore crucial to characterize the various noise sources in a GW detector. This paper reviews the Virgo detector noise sources, noise propagation, and conversion mechanisms which were identified in the three first Virgo observing runs. In many cases, these investigations allowed us to mitigate noise sources in the detector, or to selectively flag noise events and discard them from the data. We present examples from the joint LIGO-GEO-Virgo GW searches to show how well noise transients and narrow spectral lines have been identified and excluded from the Virgo data. We also discuss how detector characterization can improve the astrophysical reach of GW searches.
  •  
4.
  • Aasi, J., et al. (författare)
  • Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
  • 2013
  • Ingår i: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 88:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a "blind injection'' where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1M(circle dot)-25M(circle dot) and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.
  •  
5.
  • Aasi, J., et al. (författare)
  • Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009-2010
  • 2013
  • Ingår i: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 87:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20, 20)M-circle dot coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for nonspinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with nonspinning components of mass between 19 and 28M(circle dot) of 3:3 x 10(-7) mergers Mpc(-3) yr(-1).
  •  
6.
  • Aasi, J., et al. (författare)
  • Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data
  • 2013
  • Ingår i: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 87:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents results of an all-sky search for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative range of similar to[-20, 1.1] x 10(-10) Hz s(-1) for the fifth LIGO science run (S5). The search uses a noncoherent Hough-transform method to combine the information from coherent searches on time scales of about one day. Because these searches are very computationally intensive, they have been carried out with the Einstein@Home volunteer distributed computing project. Postprocessing identifies eight candidate signals; deeper follow-up studies rule them out. Hence, since no gravitational wave signals have been found, we report upper limits on the intrinsic gravitational wave strain amplitude h(0). For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h(0) greater than 7.6 x 10(-25) at a 90% confidence level. This search is about a factor 3 more sensitive than the previous Einstein@Home search of early S5 LIGO data.
  •  
7.
  •  
8.
  • Abdalla, E., et al. (författare)
  • Cosmology intertwined : A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies
  • 2022
  • Ingår i: Journal of High Energy Astrophysics. - : Elsevier BV. - 2214-4048 .- 2214-4056. ; 34, s. 49-211
  • Tidskriftsartikel (refereegranskat)abstract
    • The standard Λ Cold Dark Matter (ΛCDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H0, the σ8–S8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements. After showing the H0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Ωm, and the amplitude or rate of the growth of structure (σ8,fσ8). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H0–S8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions. 
  •  
9.
  • Fages, A., et al. (författare)
  • Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series
  • 2019
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674. ; 177:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (>= 1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modem legacy of past equestrian civilisations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modem breeding impacted genetic diversity more dramatically than the previous millennia of human management.
  •  
10.
  • Bastard, P, et al. (författare)
  • Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs
  • 2022
  • Ingår i: Science immunology. - : American Association for the Advancement of Science (AAAS). - 2470-9468. ; 78:7490, s. eabp8966-
  • Tidskriftsartikel (refereegranskat)abstract
    • Life-threatening ‘breakthrough’ cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS-CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals (age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, while two neutralized IFN-ω only. No patient neutralized IFN-β. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population.
  •  
11.
  • Alcorn, J, et al. (författare)
  • Basic instrumentation for Hall A at Jefferson Lab
  • 2004
  • Ingår i: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 522:3, s. 294-346
  • Tidskriftsartikel (refereegranskat)abstract
    • The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electro-and photo-induced reactions at very high luminosity and good momentum and angular resolution for at least one of the reaction products. The central components of Hall A are two identical high resolution spectrometers, which allow the vertical drift chambers in the focal plane to provide a momentum resolution of better than 2 x 10(-4). A variety of Cherenkov counters, scintillators and lead-glass calorimeters provide excellent particle identification. The facility has been operated successfully at a luminosity well in excess of 10(38) CM-2 s(-1). The research program is aimed at a variety of subjects, including nucleon structure functions, nucleon form factors and properties of the nuclear medium. (C) 2003 Elsevier B.V. All rights reserved.
  •  
12.
  • Harth, A., et al. (författare)
  • Few-cycle high-repetition rate OPCPA for multiphoton PEEM towards atto-PEEM
  • 2016
  • Ingår i: International Conference on Ultrafast Phenomena, UP 2016. - 9781943580187 ; Part F20-UP 2016
  • Konferensbidrag (refereegranskat)abstract
    • We present a few-cycle high-repetition rate optical parametric amplifier for multiphoton PEEM experiments on semiconductor nanowires. This parametric amplifier is also used for the generation of high-order harmonics at 200kHz for future atto-PEEM experiments.
  •  
13.
  • Puckett, A. J. R., et al. (författare)
  • Final analysis of proton form factor ratio data at Q(2)=4.0, 4.8, and 5.6 GeV2
  • 2012
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 85:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Precise measurements of the proton electromagnetic form factor ratio R = mu(p)G(E)(p)/G(M)(p) using the polarization transfer method at Jefferson Lab have revolutionized the understanding of nucleon structure by revealing the strong decrease of R with momentum transfer Q(2) for Q(2) greater than or similar to 1 GeV2, in strong disagreement with previous extractions of R from cross-section measurements. In particular, the polarization transfer results have exposed the limits of applicability of the one-photon-exchange approximation and highlighted the role of quark orbital angular momentum in the nucleon structure. The GEp-II experiment in Jefferson Lab's Hall A measured R at four Q(2) values in the range 3.5 GeV2 <= Q(2) <= 5.6 GeV2. A possible discrepancy between the originally published GEp-II results and more recent measurements at higher Q(2) motivated a new analysis of the GEp-II data. This article presents the final results of the GEp-II experiment, including details of the new analysis, an expanded description of the apparatus, and an overview of theoretical progress since the original publication. The key result of the final analysis is a systematic increase in the results for R, improving the consistency of the polarization transfer data in the high-Q(2) region. This increase is the result of an improved selection of elastic events which largely removes the systematic effect of the inelastic contamination, underestimated by the original analysis.
  •  
14.
  • Arnold, C. L., et al. (författare)
  • The ELI-ALPS secondary sources : A getaway to scientific excellence
  • 2013
  • Ingår i: 2013 Conference on Lasers and Electro-Optics, CLEO 2013. - 9781557529725 ; 2013
  • Konferensbidrag (refereegranskat)abstract
    • The essence of ELI-ALPS, the laser driven secondary sources ranging from X-ray and X-UV to THz with duration as short as tens of attoseconds, are designed to be available for users from 2016.
  •  
15.
  • Balcou, P, et al. (författare)
  • High-order-harmonic generation: towards laser-induced phase-matching control and relativistic effects
  • 2002
  • Ingår i: Applied Physics B. - : Springer Science and Business Media LLC. - 0946-2171 .- 1432-0649. ; 74:6, s. 509-515
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a review of some recent results on high-order-harmonic generation, aiming at optimizing the photon flux to allow for future applications in extreme-ultra-violet non-linear optics. We first present new schemes to control phase matching of high harmonics in gases, by using the effect of the spatially varying atomic phase displayed by the high harmonics. An enhancement by a factor of 50 is observed in neon in conditions for which the gradient of the atomic dispersion balances the electronic dispersion. A new scheme to manipulate the laser field was demonstrated, and shown to improve phase matching. We then turn to high-harmonic generation by solid targets, and show that high harmonics generated by an intense 30-fs laser pulse remain collimated even at the threshold of the relativistic regime.
  •  
16.
  •  
17.
  • Busto, D., et al. (författare)
  • Time-frequency representation of autoionization dynamics in helium
  • 2018
  • Ingår i: Journal of Physics B-Atomic Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 51:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Autoionization, which results from the interference between direct photoionization and photoexcitation to a discrete state decaying to the continuum by configuration interaction, is a well known example of the important role of electron correlation in light-matter interaction. Information on this process can be obtained by studying the spectral, or equivalently, temporal complex amplitude of the ionized electron wave packet. Using an energy-resolved interferometric technique, we measure the spectral amplitude and phase of autoionized wave packets emitted via the sp2+ and sp3(+) resonances in helium. These measurements allow us to reconstruct the corresponding temporal profiles by Fourier transform. In addition, applying various time-frequency representations, we observe the build-up of the wave packets in the continuum, monitor the instantaneous frequencies emitted at any time and disentangle the dynamics of the direct and resonant ionization channels.
  •  
18.
  • Gayou, O, et al. (författare)
  • Measurement of G(Ep)/G(Mp) in (e)over-right-arrowp -> e(p)over-right-arrow to Q(2)=5.6 GeV2
  • 2002
  • Ingår i: Physical Review Letters. - 1079-7114. ; 88:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The ratio of the electric and magnetic form factors of the proton G(Ep)/G(Mp), which is an image of its charge and magnetization distributions, was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the recoil polarization technique. The ratio of the form factors is directly proportional to the ratio of the transverse to longitudinal components of the polarization of the recoil proton in the elastic (e) over right arrowp --> e (p) over right arrow reaction. The new data presented span the range 3.5 < Q(2) < 5.6 GeV2 and are well described by a linear Q(2) fit. Also, the ratio rootQ(2) F-2p/F-1p reaches a constant value above Q(2) = 2 GeV2.
  •  
19.
  • Greer, M., et al. (författare)
  • Lung transplantation after allogeneic stem cell transplantation: a pan-European experience
  • 2018
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 51:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Late-onset noninfectious pulmonary complications (LONIPCs) affect 6% of allogeneic stem cell transplantation (SCT) recipients within 5 years, conferring subsequent 5-year survival of 50%. Lung transplantation is rarely performed in this setting due to concomitant extrapulmonary morbidity, excessive immunosuppression and concerns about recurring malignancy being considered contraindications. This study assesses survival in highly selected patients undergoing lung transplantation for LONIPCs after SCT. SCT patients undergoing lung transplantation at 20 European centres between 1996 and 2014 were included. Clinical data pre- and post-lung transplantation were reviewed. Propensity score-matched controls were generated from the Eurotransplant and Scandiatransplant registries. Kaplan-Meier survival analysis and Cox proportional hazard regression models evaluating predictors of graft loss were performed. Graft survival at 1, 3 and 5 years of 84%, 72% and 67%, respectively, among the 105 SCT patients proved comparable to controls (p=0.75). Sepsis accounted for 15 out of 37 deaths (41%), with prior mechanical ventilation (HR 6.9, 95% CI 1.0-46.7; p<0.001) the leading risk factor. No SCT-specific risk factors were identified. Recurring malignancy occurred in four patients (4%). Lung transplantation <2 years post-SCT increased all-cause 1-year mortality (HR 7.5, 95% CI 2.3-23.8; p=0.001). Lung transplantation outcomes following SCT were comparable to other end-stage diseases. Lung transplantation should be considered feasible in selected candidates. No SCT-specific factors influencing outcome were identified within this carefully selected patient cohort.
  •  
20.
  • Heyl, C. M., et al. (författare)
  • Noncollinear optical gating - A method for intra-cavity single attosecond pulse generation?
  • 2019
  • Ingår i: Proceedings 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CLEO/Europe-EQEC 2015. - 9781467374750
  • Konferensbidrag (refereegranskat)abstract
    • The process of high-order harmonic generation requires laser intensities around 1014 W/cm2, most easily reached with laser pulses of high energy, thus implicitly limiting the repetition rate of attosecond sources. A route towards multi-MHz attosecond sources relies on HHG inside a passive enhancement cavity [1]. Although successfully demonstrated for attosecond pulse trains, the generation of single attosecond pulses (SAPs) inside a cavity remains an unsolved challenge, mainly limited by dispersion management and out-coupling problems. We recently proposed a new gating concept for SAP generation [2], noncollinear optical gating (NOG) which has the potential to facilitate SAP gating and efficient out-coupling at once. Similar to the recently introduced attosecond lighthouse [3] NOG employs attosecond angular streaking [4] and combines this concept with noncollinear HHG, proposed earlier [5] as out-coupling method for intra cavity HHG.
  •  
21.
  • Tcherbakoff, O., et al. (författare)
  • Controlling the duration of XUV high order harmonic pulses
  • 2003
  • Ingår i: 2003 Conference on Lasers and Electro-Optics Europe, CLEO/EUROPE 2003. - 0780377346 - 9780780377349
  • Konferensbidrag (refereegranskat)abstract
    • We modulate temporally the polarization of a ∼ 30 fs, 800 nm IR pulse and use it to generate high order harmonics. The harmonic emission can clearly be confined and the XUV pulse duration can be continuously tuned from - 5 - 7 fs to 50 fs.
  •  
22.
  • Vuong, L. T., et al. (författare)
  • Optimal pulse compression via sequential filamentation
  • 2007
  • Ingår i: Quantum Electronics and Laser Science Conference, QELS 2007. - 1557528349 - 9781557528346
  • Konferensbidrag (refereegranskat)abstract
    • We demonstrate theoretically and experimentally a robust method based on sequential filamentation to optimize compression of high-energy pulses in gases. We gain insight into this process by comparing compression dynamics for linear- and circularly-polarized pulses.
  •  
23.
  •  
24.
  • Alexandridi, C., et al. (författare)
  • Attosecond photoionization dynamics in the vicinity of the Cooper minima in argon
  • 2021
  • Ingår i: Physical Review Research. - 2643-1564. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Using a spectrally resolved electron interferometry technique, we measure photoionization time delays between the 3s and 3p subshells of argon over a large 34-eV energy range covering the Cooper minima in both subshells. The observed strong variations of the 3s−3p delay difference, including a sign change, are well reproduced by theoretical calculations using the two-photon two-color random-phase approximation with exchange. Strong shake-up channels lead to photoelectrons spectrally overlapping with those emitted from the 3s subshell. These channels need to be included in our analysis to reproduce the experimental data. Our measurements provide a benchmark for multielectronic theoretical models aiming at an accurate description of interchannel correlation.
  •  
25.
  • Arnold, C. L., et al. (författare)
  • Energy scaling of gas nonlinear optics
  • 2017
  • Ingår i: 30th Annual Conference of the IEEE Photonics Society, IPC 2017. - 9781509065783 ; 2017-January, s. 503-504
  • Konferensbidrag (refereegranskat)abstract
    • Nonlinear light-matter interactions, such as filamentation or high-order harmonic generation, are at the heart of nonlinear optics. Scaling of such effects is crucial to benefit optimally from novel laser developments. We introduce and discuss a general scaling model for nonlinear light-matter interactions in gases.
  •  
26.
  • Cheng, Y. C., et al. (författare)
  • Can we break the symmetry along the polarization axis in photoionization?
  • 2020. - 7
  • Ingår i: Attosecond Physics. - : IOP Publishing. - 1742-6588. ; 1412
  • Konferensbidrag (refereegranskat)abstract
    • Photoionization is a fundamental process in which an electron is emitted from an atom. The emission is traditionally considered to be symmetric with respect to the polarization axis, unless it is temporally confined to a period shorter than an optical cycle time. We demonstrate that this symmetry can still be broken by combining a train of a few attosecond pulses and a dressing laser field. The light fields act as temporal slits and phase modulator that releases electron wavepackets. The resulting photoelectron spectra differ for electrons emitted in opposite direction along the polarization.
  •  
27.
  • Gisselbrecht, M., et al. (författare)
  • Attosecond insight into electron correlation
  • 2019
  • Ingår i: Proceedings 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CLEO/Europe-EQEC 2015. - 9781467374750
  • Konferensbidrag (refereegranskat)abstract
    • Photoionization with a single photon is one of the fundamental processes in nature, in which one electron is ripped away from its atom. Traditionally studied in the energy domain, this process was believed to be instantaneous, but recent advances in the production of attosecond pulses (1 as 10−18 s) in the eXtreme UltraViolet (XUV) have renewed interest in understanding the temporal aspects of electron emission in atoms, molecules and the solid state [1–8]. We present here our progress in understanding the influence of electronic correlations on the attosecond photoionization dynamics.
  •  
28.
  • Guenot, Diego, et al. (författare)
  • Photoemission time delay measurements and calculations close to the 3s ionization cross section minimum in ar
  • 2012
  • Ingår i: Physical Review A. Atomic, Molecular, and Optical Physics. - 1050-2947 .- 1094-1622. ; 85:5, s. 053424-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present experimental measurements and theoretical calculations of photoionization time delays from the 3s and 3p shells in Ar in the photon energy range of 32-42 eV. The experimental measurements are performed by interferometry using attosecond pulse trains and the infrared laser used for their generation. The theoretical approach includes intershell correlation effects between the 3s and 3p shells within the framework of the random-phase approximation with exchange. The connection between single-photon ionization and the two-color two-photon ionization process used in the measurement is established using the recently developed asymptotic approximation for the complex transition amplitudes of laser-assisted photoionization. We compare and discuss the theoretical and experimental results, especially in the region where strong intershell correlations in the 3s -> kp channel lead to an induced Cooper minimum in the 3s ionization cross section.
  •  
29.
  • Guenot, Diego, et al. (författare)
  • Probing electron correlation on the attosecond time scale
  • 2014
  • Ingår i: High Intensity Lasers and High Field Phenomena, HILAS 2014. - 9781557529954
  • Konferensbidrag (refereegranskat)abstract
    • We present experimental measurements and theoretical calculations of single and double ionization time delays in various noble gases using an interferometric method. The measured delays allow us to extract information on the electron correlation.
  •  
30.
  •  
31.
  • Heyl, C. M., et al. (författare)
  • High-average power high-harmonic and attosecond sources : Status and prospects
  • 2016
  • Ingår i: Compact EUV and X-ray Light Sources, EUVXRAY 2016. - 9781943580095 ; Part F14-EUVXRAY 2016
  • Konferensbidrag (refereegranskat)abstract
    • Experiments employing extreme ultraviolet sources based on high harmonic generation often suffer from photon flux limitations. We discuss current status and prospects for scaling such sources to higher repetition rate, pulse energy and average power.
  •  
32.
  • Heyl, C. M., et al. (författare)
  • Introduction to macroscopic power scaling principles for high-order harmonic generation
  • 2017
  • Ingår i: Journal of Physics B: Atomic, Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 50:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This tutorial presents an introduction to power scaling concepts for high-order harmonic generation (HHG) and attosecond pulse production. We present an overview of state-of-the-art HHG-based extreme ultraviolet (XUV) sources, followed by a brief introduction to basic principles underlying HHG and a detailed discussion of macroscopic effects and scaling principles. Particular emphasis is put on a general scaling model that allows the invariant scaling of the HHG process both, to μJ-level driving laser pulses and thus to multi-MHz repetition rates as well as to 100 mJ-or even Joule-level laser pulses, allowing new intensity regimes with attosecond XUV pulses.
  •  
33.
  •  
34.
  • Heyl, C. M., et al. (författare)
  • Scale-invariant nonlinear optical effects in gases
  • 2016
  • Ingår i: 2016 Conference on Lasers and Electro-Optics, CLEO 2016. - 9781943580118
  • Konferensbidrag (refereegranskat)abstract
    • A general scaling formalism for nonlinear light-matter interactions in gases is presented and experimentally verified. The formalism enables to conveniently extrapolate nonlinear phenomena, such as filamentation or high-order harmonic generation, to new laser parameters.
  •  
35.
  • Heyl, C. M., et al. (författare)
  • Scaling Nonlinear Optics in Gases
  • 2016
  • Ingår i: High Intensity Lasers and High Field Phenomena, HILAS 2016. - 9781943580095 ; Part F15-HILAS 2016
  • Konferensbidrag (refereegranskat)abstract
    • Extrapolating nonlinear phenomena, such as filamentation, to new parameters as e.g. to higher pulse energy is often challenging. We here present a general scaling model for nonlinear light-matter interactions in gases and proof it experimentally.
  •  
36.
  • Isinger, M., et al. (författare)
  • Photoionization in the time and frequency domain
  • 2017
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 358:6365, s. 893-6
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrafast processes in matter, such as the electron emission following light absorption, can now be studied using ultrashort light pulses of attosecond duration (10−18 s) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses has raised issues in the interpretation of the experimental results and the comparison with theoretical calculations. We determine photoionization time delays in neon atoms over a 40 eV energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake-up, in which a second electron is left in an excited state, and obtain excellent agreement with theoretical calculations, thereby solving a puzzle raised by 7-year-old measurements.
  •  
37.
  • Jimenez-Galan, A., et al. (författare)
  • Phase Measurement of a Fano Resonance Using Tunable Attosecond Pulses
  • 2015
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 635, s. 092137-092137
  • Konferensbidrag (refereegranskat)abstract
    • We study photoionization of argon atoms close to the 3s(2)3p(6) -> 3s(1)3p(6)4p Fano resonance using an attosecond pulse train and a weak infrared probe field. An interferometric technique combined with tunable attosecond pulses allows us to determine the phase of the photoionization amplitude as a function of photon energy. We interpret the experimental results using an analytical two-photon model based on the Fano formalism and obtain quantitative agreement.
  •  
38.
  •  
39.
  • Kotur, Marija, et al. (författare)
  • Spectral phase measurement of a Fano resonance using tunable attosecond pulses
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron dynamics induced by resonant absorption of light is of fundamental importance in nature and has been the subject of countless studies in many scientific areas. Above the ionization threshold of atomic or molecular systems, the presence of discrete states leads to autoionization, which is an interference between two quantum paths: direct ionization and excitation of the discrete state coupled to the continuum. Traditionally studied with synchrotron radiation, the probability for autoionization exhibits a universal Fano intensity profile as a function of excitation energy. However, without additional phase information, the full temporal dynamics cannot be recovered. Here we use tunable attosecond pulses combined with weak infrared radiation in an interferometric setup to measure not only the intensity but also the phase variation of the photoionization amplitude across an autoionization resonance in argon. The phase variation can be used as a fingerprint of the interactions between the discrete state and the ionization continua, indicating a new route towards monitoring electron correlations in time.
  •  
40.
  • Laurell, H., et al. (författare)
  • Continuous-variable quantum state tomography of photoelectrons
  • 2022
  • Ingår i: Physical Review Research. - 2643-1564. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a continuous variable quantum state tomography protocol of electrons which result from the ionization of atoms or molecules by the absorption of extreme ultraviolet light pulses. Our protocol is benchmarked against a direct calculation of the quantum state of photoelectrons ejected from helium and argon in the vicinity of a Fano resonance. In the latter case, we furthermore distill ion-photoelectron entanglement due to spin-orbit splitting. This opens routes toward the investigation of quantum coherence and entanglement properties on the ultrafast timescale.
  •  
41.
  • Lorek, Eleonora, et al. (författare)
  • High-Order Harmonic Generation and Plasmonics
  • 2015
  • Ingår i: Nano-Structures for Optics and Photonics : Optical Strategies for Enhancing Sensing, Imaging, Communication and Energy Conversion - Optical Strategies for Enhancing Sensing, Imaging, Communication and Energy Conversion. - Dordrecht : Springer Netherlands. - 9789401791328 - 9789401791335 ; , s. 531-531
  • Bokkapitel (refereegranskat)abstract
    • Attosecond pulses allow for imaging of very fast processes, like electron dynamics. Stockman et al. suggested to use these pulses in connection with a Photoemission electron microscope (PEEM) to study the ultrafast dynamics of plasmons (Stockman et al. Nat Photonics 1:539–544, 2007). For efficient plasmon studies, the repetition rate of the attosecond pulses used needs to be higher than a few kHz (Mikkelsen et al. Rev Sci Instrum 80:123703, 2009). Attosecond pulses are produced in a process called high-order harmonic generation (HHG) (Paul et al. Science 292(5522):1689–1692, 2001; Ferray et al. J Phys B At Mol Opt Phys 21:L31–L35, 1988). In HHG, a strong laser field allows an electron to tunnel out, get accelerated and recombine with a high kinetic energy resulting in extreme ultraviolet attosecond pulses. The large intensity needed to drive the process normally limits the repetition rate of the laser to a few kHz. Using a tight focusing scheme (Heyl et al. Phys Rev Lett 107:033903, 2011; Vernaleken et al. Opt Lett 36:3428–3430, 2011), we, however, generate harmonics at a repetition rate of 200 kHz, both with a commercial turn-key laser and with an advanced laser system. Suitable nanostructures for a strong field enhancement are produced in-house and the field enhancement is studied with PEEM in a non-time resolved manner. With high-order harmonics produced at a high repetition rate, we hope to be able to follow also the ultrafast dynamics of plasmons in these structures (Mårsell et al. Ann der Phys 525:162–170, 2013).
  •  
42.
  • Louisy, Maite, et al. (författare)
  • Gating attosecond pulses in a noncollinear geometry
  • 2015
  • Ingår i: Optica. - 2334-2536. ; 2:6, s. 563-566
  • Tidskriftsartikel (refereegranskat)abstract
    • The efficient generation of isolated attosecond pulses (IAPs), giving access to ultrafast electron dynamics in various systems, is a key challenge in attosecond science. IAPs can be produced by confining the extreme ultraviolet emission generated by an intense laser pulse to a single field half-cycle or, as shown recently, by employing angular streaking methods. Here, we experimentally demonstrate the angular streaking of attosecond pulse trains in a noncollinear geometry, leading to the emission of angularly separated IAPs. The noncollinear geometry simplifies the separation of the fundamental laser field and the generated pulses, making this scheme promising for intracavity attosecond pulse generation, thus opening new possibilities for high-repetition-rate attosecond sources. (C) 2015 Optical Society of America
  •  
43.
  • Makos, I, et al. (författare)
  • Α 10-gigawatt attosecond source for non-linear XUV optics and XUV-pump-XUV-probe studies
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The quantum mechanical motion of electrons and nuclei in systems spatially confined to the molecular dimensions occurs on the sub-femtosecond to the femtosecond timescales respectively. Consequently, the study of ultrafast electronic and, in specific cases, nuclear dynamics requires the availability of light pulses with attosecond (asec) duration and of sufficient intensity to induce two-photon processes, essential for probing the intrinsic system dynamics. The majority of atoms, molecules and solids absorb in the extreme-ultraviolet (XUV) spectral region, in which the synthesis of the required attosecond pulses is feasible. Therefore, the XUV spectral region optimally serves the study of such ultrafast phenomena. Here, we present a detailed review of the first 10-GW class XUV attosecond source based on laser driven high harmonic generation in rare gases. The pulse energy of this source largely exceeds other laser driven attosecond sources and is comparable to the pulse energy of femtosecond Free-Electron-Laser (FEL) XUV sources. The measured pulse duration in the attosecond pulse train is 650 ± 80 asec. The uniqueness of the combined high intensity and short pulse duration of the source is evidenced in non-linear XUV-optics experiments. It further advances the implementation of XUV-pump-XUV-probe experiments and enables the investigation of strong field effects in the XUV spectral region.
  •  
44.
  • Miranda, M., et al. (författare)
  • Generation and spatiotemporal characterization of ultrashort vortex pulses
  • 2019
  • Ingår i: Proceedings 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CLEO/Europe-EQEC 2015. - 9781467374750
  • Konferensbidrag (refereegranskat)abstract
    • Some light beams rotate as they propagate. If it is not the polarization vector, but the phase structure that rotates, the beam is said to carry orbital angular momentum (OAM). Such beams exhibit a helical phase front, where the phase rotates around a symmetry center. Because the phase in the center is undefined (and the intensity there is therefore zero), it is often termed a phase singularity or optical vortex by analogy to superfluidic vortices. Vortex beams [1,2] and more specifically ultrashort (few cycle) vortex pulses [3] have recently attracted strong interest.
  •  
45.
  • Nandi, S., et al. (författare)
  • Attosecond timing of electron emission from a molecular shape resonance
  • 2020
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:31
  • Tidskriftsartikel (refereegranskat)abstract
    • Shape resonances in physics and chemistry arise from the spatial confinement of a particle by a potential barrier. In molecular photoionization, these barriers prevent the electron from escaping instantaneously, so that nuclei may move and modify the potential, thereby affecting the ionization process. By using an attosecond two-color interferometric approach in combination with high spectral resolution, we have captured the changes induced by the nuclear motion on the centrifugal barrier that sustains the well-known shape resonance in valence-ionized N-2. We show that despite the nuclear motion altering the bond length by only 2%, which leads to tiny changes in the potential barrier, the corresponding change in the ionization time can be as large as 200 attoseconds. This result poses limits to the concept of instantaneous electronic transitions in molecules, which is at the basis of the Franck-Condon principle of molecular spectroscopy.
  •  
46.
  • Neidel, Ch, et al. (författare)
  • Probing Time-Dependent Molecular Dipoles on the Attosecond Time Scale
  • 2013
  • Ingår i: Physical Review Letters. - 1079-7114. ; 111:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoinduced molecular processes start with the interaction of the instantaneous electric field of the incident light with the electronic degrees of freedom. This early attosecond electronic motion impacts the fate of the photoinduced reactions. We report the first observation of attosecond time scale electron dynamics in a series of small-and medium-sized neutral molecules (N-2, CO2, and C2H4), monitoring time-dependent variations of the parent molecular ion yield in the ionization by an attosecond pulse, and thereby probing the time-dependent dipole induced by a moderately strong near-infrared laser field. This approach can be generalized to other molecular species and may be regarded as a first example of molecular attosecond Stark spectroscopy.
  •  
47.
  •  
48.
  • Veyrinas, K., et al. (författare)
  • Chromatic aberrations correction of attosecond high-order harmonic beams by flat-top spatial shaping of the fundamental beam
  • 2023
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 25:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Attosecond pulses created by high-order harmonic generation in gases often exhibit strong chromatic aberrations, arising from the broad bandwidth and wavelength-dependent nonlinear light-matter interaction. When the driving laser intensity varies spatially, as for Gaussian driving beams, the apparent source position of the harmonics differs significantly from one order to the next, thus affecting the achievable intensity and duration of the attosecond pulses when they are focused on a target. We show that these chromatic aberrations can be reduced by spatially shaping the fundamental beam to generate high-order harmonics with a driver having a flat-top profile inside the gas medium. By measuring both the intensity profile and wavefront for each harmonic in a plane, we access the extreme ultra-violet (XUV) beam properties and investigate these properties near focus. We observe that controlling chromatic aberrations by flat-top spatial shaping strongly reduces the variation of the XUV spectrum on the beam axis during propagation and, in return, the longitudinal sensitivity of both the temporal profiles and the temporal shifts of the focused attosecond pulses.
  •  
49.
  • Veyrinas, K., et al. (författare)
  • High order harmonic generation with spatially shaped flat top driver to control XUV chromatic aberrations
  • 2023
  • Ingår i: 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023. - 9798350345995
  • Konferensbidrag (refereegranskat)abstract
    • The XUV beams generated via high order harmonic generation (HHG) in gases have spatial properties evolving with the harmonic order. It leads to chromatic aberrations when the harmonics are focussed so that, locally, the spectral content can change significantly during propagation [1-3] especially near focus.
  •  
50.
  • Zaïr, A., et al. (författare)
  • Confinement of attosecond train pulses by using a modulated polarization IR pulse
  • 2005
  • Ingår i: 2005 Conference on Lasers and Electro-Optics Europe. - 0780389743 - 9780780389748
  • Konferensbidrag (refereegranskat)abstract
    • We study the temporal and spectral behaviour of high order harmonics generated by pulses with temporally modulated polarization. We observe a harmonic temporal confinement and a harmonic spectral broadening, compatible with 1 -or-2 attosecond pulse emission.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 113

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy