SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lännerström Johan) "

Sökning: WFRF:(Lännerström Johan)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cardinale, Daniele A., 1982-, et al. (författare)
  • Influence of Hyperoxic-Supplemented High-Intensity Interval Training on Hemotological and Muscle Mitochondrial Adaptations in Trained Cyclists.
  • 2019
  • Ingår i: Frontiers in Physiology. - : Frontiers Media S.A.. - 1664-042X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Hyperoxia (HYPER) increases O2 carrying capacity resulting in a higher O2 delivery to the working muscles during exercise. Several lines of evidence indicate that lactate metabolism, power output, and endurance are improved by HYPER compared to normoxia (NORM). Since HYPER enables a higher exercise power output compared to NORM and considering the O2 delivery limitation at exercise intensities near to maximum, we hypothesized that hyperoxic-supplemented high-intensity interval training (HIIT) would upregulate muscle mitochondrial oxidative capacity and enhance endurance cycling performance compared to training in normoxia. Methods: 23 trained cyclists, age 35.3 ± 6.4 years, body mass 75.2 ± 9.6 kg, height 179.8 ± 7.9 m, and VO2max 4.5 ± 0.7 L min-1 performed 6 weeks polarized and periodized endurance training on a cycle ergometer consisting of supervised HIIT sessions 3 days/week and additional low-intensity training 2 days/week. Participants were randomly assigned to either HYPER (FIO2 0.30; n = 12) or NORM (FIO2 0.21; n = 11) breathing condition during HIIT. Mitochondrial respiration in permeabilized fibers and isolated mitochondria together with maximal and submaximal VO2, hematological parameters, and self-paced endurance cycling performance were tested pre- and posttraining intervention. Results: Hyperoxic training led to a small, non-significant change in performance compared to normoxic training (HYPER 6.0 ± 3.7%, NORM 2.4 ± 5.0%; p = 0.073, ES = 0.32). This small, beneficial effect on the self-paced endurance cycling performance was not explained by the change in VO2max (HYPER 1.1 ± 3.8%, NORM 0.0 ± 3.7%; p = 0.55, ES = 0.08), blood volume and hemoglobin mass, mitochondrial oxidative phosphorylation capacity (permeabilized fibers: HYPER 27.3 ± 46.0%, NORM 16.5 ± 49.1%; p = 0.37, ES = 3.24 and in isolated mitochondria: HYPER 26.1 ± 80.1%, NORM 15.9 ± 73.3%; p = 0.66, ES = 0.51), or markers of mitochondrial content which were similar between groups post intervention. Conclusions: This study showed that 6 weeks hyperoxic-supplemented HIIT led to marginal gain in cycle performance in already trained cyclists without change in VO2max, blood volume, hemoglobin mass, mitochondrial oxidative phosphorylation capacity, or exercise efficiency. The underlying mechanisms for the potentially meaningful performance effects of hyperoxia training remain unexplained and may raise ethical questions for elite sport.
  •  
2.
  • Flockhart, Mikael, et al. (författare)
  • Glucosinolate-rich broccoli sprouts protect against oxidative stress and improve adaptations to intense exercise training.
  • 2023
  • Ingår i: Redox Biology. - : Elsevier. - 2213-2317. ; 67
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative stress plays a vital role for the adaptive responses to physical training. However, excessive oxidative stress can precipitate cellular damage, necessitating protective mechanisms to mitigate this effect. Glucosinolates, found predominantly in cruciferous vegetables, can be converted into isothiocyanates, known for their antioxidative properties. These compounds activate crucial antioxidant defence pathways and support mitochondrial function and protein integrity under oxidative stress, in both Nrf2-dependent and independent manners. We here administered glucosinolate-rich broccoli sprouts (GRS), in a randomized double-blinded cross-over fashion to 9 healthy subjects in combination with daily intense exercise training for 7 days. We found that exercise in combination with GRS significantly decreased the levels of carbonylated proteins in skeletal muscle and the release of myeloperoxidase into blood. Moreover, it lowered lactate accumulation during submaximal exercise, and attenuated the severe nocturnal hypoglycaemic episodes seen during the placebo condition. Furthermore, GRS in combination with exercise improved physical performance, which was unchanged in the placebo condition.
  •  
3.
  • Lännerström, Johan, et al. (författare)
  • Effects of Plyometric Training on Soft and Hard Surfaces for Improving Running Economy.
  • 2021
  • Ingår i: Journal of Human Kinetics. - : Sciendo. - 1640-5544 .- 1899-7562. ; 79:1, s. 187-196
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study investigated the effects of plyometric jump training on hard and soft surfaces on running economy (RE), maximal oxygen uptake (VO2max), running performance and the rate of force development in orienteers. Nineteen orienteers (11 women and 8 men, body mass 61.1 ± 7.3 kg, age 21 ± 5.8 yrs) were randomly stratified based on sex, age, VO2max and RE to plyometric jumping training (8 sessions over 4 weeks) on either a hard or a soft surface. RE, VO2max and running performance were assessed on a treadmill and outdoor on- and off-trail loops. Moreover, ground reaction forces and force development were assessed during a one leg drop-jump test. The training intervention led to an overall 2-7% improvement in treadmill and off-trail RE, independent of the jumping surface and running velocity assessed. These improvements were not explained by force development during drop jump tests, which remained unchanged following the intervention. The changes in time-trial performance were associated with changes in RE. Plyometric training improved RE with no difference between the hard or the soft training surface and improved RE was also independent of the running speed assessed. Furthermore, improved running performance was associated with changes in RE after the intervention.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy