SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lässer Cecilia 1981) "

Sökning: WFRF:(Lässer Cecilia 1981)

  • Resultat 1-50 av 65
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lässer, Cecilia, 1981, et al. (författare)
  • Exosomes in the nose induce immune cell trafficking and harbour an altered protein cargo in chronic airway inflammation.
  • 2016
  • Ingår i: Journal of Translational Medicine. - : Springer Science and Business Media LLC. - 1479-5876. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Exosomes are nano-sized extracellular vesicles participating in cell-to-cell communication both in health and disease. However, the knowledge about the functions and molecular composition of exosomes in the upper airways is limited. The aim of the current study was therefore to determine whether nasal exosomes can influence inflammatory cells and to establish the proteome of nasal lavage fluid-derived exosomes in healthy subjects, as well as its alterations in individuals with chronic airway inflammatory diseases [asthma and chronic rhinosinusitis (CRS)]. METHODS: Nasal lavage fluid was collected from 14 healthy subjects, 15 subjects with asthma and 13 subjects with asthma/CRS. Exosomes were isolated with differential centrifugation and the proteome was analysed by LC-MS/MS with the application of two exclusion lists as well as using quantitative proteomics. Ingenuity Pathways Analysis and GO Term finder was used to predict the functions associated with the exosomal proteome and a migration assay was used to analyse the effect on immune cells by nasal exosomes. RESULTS: Firstly, we demonstrate that nasal exosomes can induce migration of several immune cells, such as monocytes, neutrophils and NK cells in vitro. Secondly, a mass spectrometry approach, with the application of exclusion lists, was utilised to generate a comprehensive protein inventory of the exosomes from healthy subjects. The use of exclusion lists resulted in the identification of ~15 % additional proteins, and increased the confidence in ~20 % of identified proteins. In total, 604 proteins were identified in nasal exosomes and the nasal exosomal proteome showed strong associations with immune-related functions, such as immune cell trafficking. Thirdly, a quantitative proteomics approach was used to determine alterations in the exosome proteome as a result of airway inflammatory disease. Serum-associated proteins and mucins were more abundant in the exosomes from subjects with respiratory diseases compared to healthy controls while proteins with antimicrobial functions and barrier-related proteins had decreased expression. CONCLUSIONS: Nasal exosomes were shown to induce the migration of innate immune cells, which may be important as the airway epithelium is the first line of defence against pathogens and allergens. The decreased expression in barrier and antimicrobial exosomal proteins in subjects with airway diseases, could possibly contribute to an increased susceptibility to infections, which have important clinical implications in disease progression.
  •  
2.
  • Lässer, Cecilia, 1981, et al. (författare)
  • RNA-containing exosomes in human nasal secretions.
  • 2011
  • Ingår i: American journal of rhinology & allergy. - : SAGE Publications. - 1945-8932 .- 1945-8924. ; 25:2, s. 89-93
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Exosomes are nanovesicles of endocytic origin released by cells and present in human body fluids such as plasma, breast milk, andbronchoalveolar lavage fluid. These vesicles take part in communication between cells. Recently, it was shown that exosomes contain both mRNA andmicroRNA. This RNA can be shuttled between cells (exosomal shuttle RNA), which is a new route of communication between cells. The aim of this study wasto determine whether nasal secretions harbor exosomes and furthermore, whether these exosomes contain RNA.METHODS: Human nasal lavage fluid (NLF) underwent centrifugation and filtration to discard cells and debris, followed by a final ultracentrifugation at 120,000 X g to pellet the exosomes. Exosomes were detected using electron microscopy (EM), flow cytometry, and Western blot. RNA was extracted and analyzed using a Bioanalyzer.RESULTS: Exosomes were visualized as 40-80 nm, CD63+ vesicles using EM. Flow cytometry of exosomes using anti-major histocompatibility complex classII beads revealed exosomes positive for the tetraspanins CD9, CD63, and CD81. Western blot confirmed the presence of exosomal protein and absence ofproteins from the endoplasmic reticulum (ER), because the exosomes were positive for Tsg101, but negative for the ER marker, calnexin. Bioanalyzer analysis revealed that, these exosomes contain RNA.CONCLUSION: This study shows for the first time that NLF contains exosomes and that these exosomes contain RNA. Further characterization of the exosomalRNA and proteins may provide important information about communication in the nose and potentially provide a source of biomarkers for upper airwaydiseases.
  •  
3.
  • Park, Kyong-Su, et al. (författare)
  • Detoxified synthetic bacterial membrane vesicles as a vaccine platform against bacteria and SARS-CoV-2
  • 2023
  • Ingår i: Journal of Nanobiotechnology. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of vaccines based on outer membrane vesicles (OMV) that naturally bud off from bacteria is an evolving field in infectious diseases. However, the inherent inflammatory nature of OMV limits their use as human vaccines. This study employed an engineered vesicle technology to develop synthetic bacterial vesicles (SyBV) that activate the immune system without the severe immunotoxicity of OMV. SyBV were generated from bacterial membranes through treatment with detergent and ionic stress. SyBV induced less inflammatory responses in macrophages and in mice compared to natural OMV. Immunization with SyBV or OMV induced comparable antigen-specific adaptive immunity. Specifically, immunization with Pseudomonas aeruginosa-derived SyBV protected mice against bacterial challenge, and this was accompanied by significant reduction in lung cell infiltration and inflammatory cytokines. Further, immunization with Escherichia coli-derived SyBV protected mice against E. coli sepsis, comparable to OMV-immunized group. The protective activity of SyBV was driven by the stimulation of B-cell and T-cell immunity. Also, SyBV were engineered to display the SARS-CoV-2 S1 protein on their surface, and these vesicles induced specific S1 protein antibody and T-cell responses. Collectively, these results demonstrate that SyBV may be a safe and efficient vaccine platform for the prevention of bacterial and viral infections
  •  
4.
  • Park, Kyong-Su, et al. (författare)
  • Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10.
  • 2019
  • Ingår i: Stem cell research & therapy. - : Springer Science and Business Media LLC. - 1757-6512. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sepsis remains a source of high mortality in hospitalized patients despite proper antibiotic approaches. Encouragingly, mesenchymal stromal cells (MSCs) and their produced extracellular vesicles (EVs) have been shown to elicit anti-inflammatory effects in multiple inflammatory conditions including sepsis. However, EVs are generally released from mammalian cells in relatively low amounts, and high-yield isolation of EVs is still challenging due to a complicated procedure. To get over these limitations, vesicles very similar to EVs can be produced by serial extrusions of cells, after which they are called nanovesicles (NVs). We hypothesized that MSC-derived NVs can attenuate the cytokine storm induced by bacterial outer membrane vesicles (OMVs) in mice, and we aimed to elucidate the mechanism involved.NVs were produced from MSCs by the breakdown of cells through serial extrusions and were subsequently floated in a density gradient. Morphology and the number of NVs were analyzed by transmission electron microscopy and nanoparticle tracking analysis. Mice were intraperitoneally injected with Escherichia coli-derived OMVs to establish sepsis, and then injected with 2×109 NVs. Innate inflammation was assessed in peritoneal fluid and blood through investigation of infiltration of cells and cytokine production. The biodistribution of NVs labeled with Cy7 dye was analyzed using near-infrared imaging.Electron microscopy showed that NVs have a nanometer-size spherical shape and harbor classical EV marker proteins. In mice, NVs inhibited eye exudates and hypothermia, signs of a systemic cytokine storm, induced by intraperitoneal injection of OMVs. Moreover, NVs significantly suppressed cytokine release into the systemic circulation, as well as neutrophil and monocyte infiltration in the peritoneum. The protective effect of NVs was significantly reduced by prior treatment with anti-interleukin (IL)-10 monoclonal antibody. In biodistribution study, NVs spread to the whole mouse body and localized in the lung, liver, and kidney at 6h.Taken together, these data indicate that MSC-derived NVs have beneficial effects in a mouse model of sepsis by upregulating the IL-10 production, suggesting that artificial NVs may be novel EV-mimetics clinically applicable to septic patients.
  •  
5.
  • Park, Kyong-Su, et al. (författare)
  • Synthetic bacterial vesicles combined with tumour extracellular vesicles as cancer immunotherapy
  • 2021
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 10:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial outer membrane vesicles (OMV) have gained attention as a promising new cancer vaccine platform for efficiently provoking immune responses. However, OMV induce severe toxicity by activating the innate immune system. In this study, we applied a simple isolation approach to produce artificial OMV that we have named Synthetic Bacterial Vesicles (SyBV) that do not induce a severe toxic response. We also explored the potential of SyBV as an immunotherapy combined with tumour extracellular vesicles to induce anti-tumour immunity. Bacterial SyBV were produced with high yield by a protocol including lysozyme and high pH treatment, resulting in pure vesicles with very few cytosolic components and no RNA or DNA. These SyBV did not cause systemic pro-inflammatory cytokine responses in mice compared to naturally released OMV. However, SyBV and OMV were similarly effective in activation of mouse bone marrow-derived dendritic cells. Co-immunization with SyBV and melanoma extracellular vesicles elicited tumour regression in melanoma-bearing mice through Th-1 type T cell immunity and balanced antibody production. Also, the immunotherapeutic effect of SyBV was synergistically enhanced by anti-PD-1 inhibitor. Moreover, SyBV displayed significantly greater adjuvant activity than other classical adjuvants. Taken together, these results demonstrate a safe and efficient strategy for eliciting specific anti-tumour responses using immunotherapeutic bacterial SyBV.
  •  
6.
  • Rupert, Deborah, 1986, et al. (författare)
  • Determination of exosome concentration in solution using surface plasmon resonance spectroscopy.
  • 2014
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 86:12, s. 5929-5936
  • Tidskriftsartikel (refereegranskat)abstract
    • Exosomes are cell-secreted nanometer-sized extracellular vesicles that have been reported to play an important role in intercellular communication. They are also considered potential diagnostic markers for various health disorders, and intense investigations are presently directed towards their use as carriers in drug-delivery and gene-therapy applications. This has generated a growing need for sensitive methods capable of accurately and specifically determining the concentration of exosomes in complex biological fluids. Here, we explore the use of label-free surface-based sensing with surface plasmon resonance (SPR) read-out to determine the concentration of exosomes in solution. Human mast cell secreted exosomes carrying the tetraspanin membrane protein CD63 were analyzed by measuring their diffusion-limited binding rate to an SPR sensor surface functionalized with anti-CD63 antibodies. The concentration of suspended exosomes was determined by first converting the SPR response into surface-bound mass. The increase in mass uptake over time was then related to the exosome concentration in solution using a formalism describing diffusion-limited binding under controlled flow conditions. The proposed quantification method is based on a calibration and control measurements performed with proteins and synthetic lipid vesicles and takes into account i) the influence of the broad size distribution of the exosomes on the surface coverage, ii) the fact that their size is comparable to the ~150 nm probing depth of SPR, and iii) possible deformation of exosomes upon adsorption. Under those considerations, the accuracy of the concentration determination was estimated to be better than ±50% and significantly better if exosome deformation is negligible.
  •  
7.
  • Rupert, Deborah, 1986, et al. (författare)
  • Dual-Wavelength Surface Plasmon Resonance for Determining the Size and Concentration of Sub-Populations of Extracellular Vesicles
  • 2016
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 88:20, s. 9980-9988
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate concentration determination of subpopulations of extracellular vesicles (EVs), such as exosomes, is of importance both in the context of understanding their fundamental biological role and of potentially using them as disease biomarkers. In principle, this can be achieved by measuring the rate of diffusion-limited mass uptake to a sensor surface modified with a receptor designed to only bind the subpopulation of interest. However, a significant error is introduced if the targeted EV subpopulation has a size, and thus hydrodynamic diffusion coefficient, that differs from the mean size and diffusion coefficient of the whole EV population and/or if the EVs become deformed upon binding to the surface. We here demonstrate a new approach to determine the mean size (or effective film thickness) of bound nanoparticles, in general, and EV subpopulation carrying a marker of interest, in particular. The method is based on operating surface plasmon resonance simultaneously at two wavelengths with different sensing depths and using the ratio of the corresponding responses to extract the particle size on the surface. By estimating in this way the degree of deformation of adsorbed EVs, we markedly improved their bulk concentration determination and showed that EVs carrying the exosomal marker CD63 correspond to not more than around 10% of the EV sample.
  •  
8.
  • Rupert, Deborah, 1986, et al. (författare)
  • Methods for the physical characterization and quantification of extracellular vesicles in biological samples
  • 2017
  • Ingår i: Biochimica et Biophysica Acta - General Subjects. - : Elsevier BV. - 1872-8006 .- 0304-4165. ; Epub ahead of print:1, s. 3164-3179
  • Forskningsöversikt (refereegranskat)abstract
    • BACKGROUND:Our body fluids contain a multitude of cell-derived vesicles, secreted by most cell types, commonly referred to as extracellular vesicles. They have attracted considerable attention for their function as intercellular communication vehicles in a broad range of physiological processes and pathological conditions. Extracellular vesicles and especially the smallest type, exosomes, have also generated a lot of excitement in view of their potential as disease biomarkers or as carriers for drug delivery. In this context, state-of-the-art techniques capable of comprehensively characterizing vesicles in biological fluids are urgently needed.SCOPE OF REVIEW:This review presents the arsenal of techniques available for quantification and characterization of physical properties of extracellular vesicles, summarizes their working principles, discusses their advantages and limitations and further illustrates their implementation in vesicle research.MAJOR CONCLUSIONS:The small size and physicochemical heterogeneity of extracellular vesicles make their physical characterization and quantification an extremely challenging task. Currently, structure, size, buoyant density, optical properties and zeta potential have most commonly been studied. The concentration of vesicles in suspension can be expressed in terms of biomolecular or particle content depending on the method at hand. In addition, common quantification methods may either provide a direct quantitative measurement of vesicle concentration or solely allow for relative comparison between samples.GENERAL SIGNIFICANCE:The combination of complementary methods capable of detecting, characterizing and quantifying extracellular vesicles at a single particle level promises to provide new exciting insights into their modes of action and to reveal the existence of vesicle subpopulations fulfilling key biological tasks.
  •  
9.
  • Svennerholm, Kristina, 1981, et al. (författare)
  • Escherichia coli outer membrane vesicles can contribute to sepsis induced cardiac dysfunction.
  • 2017
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Sepsis induced cardiac dysfunction (SIC) is a severe complication to sepsis which significantly worsens patient outcomes. It is known that bacteria have the capacity to release outer membrane vesicles (OMVs), which are nano-sized bilayered vesicles composed of lipids and proteins, that can induce a fatal inflammatory response. The aim of this study was to determine whether OMVs from a uropathogenic Escherichia coli strain can induce cardiac dysfunction, and to elucidate any mechanisms involved. OMVs induced irregular Ca2+ oscillations with a decreased frequency in cardiomyocytes through recordings of intracellular Ca2+ dynamics. Mice were intraperitoneally injected with bacteria-free OMVs, which resulted in increased concentration of pro-inflammatory cytokine levels in blood. Cytokines were increased in heart lysates, and OMVs could be detected in the heart after OMVs injection. Troponin T was significantly increased in blood, and echocardiography showed increased heart wall thickness as well as increased heart rate. This study shows that E. coli OMVs induce cardiac injury in vitro and in vivo, in the absence of bacteria, and may be a causative microbial signal in SIC. The role of OMVs in clinical disease warrant further studies, as bacterial OMVs in addition to live bacteria may be good therapeutic targets to control sepsis.
  •  
10.
  • Zhang, Guo-Qiang, et al. (författare)
  • Exogenous female sex steroid hormones and new-onset asthma in women: a matched case-control study
  • 2023
  • Ingår i: BMC medicine. - 1741-7015. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence on the role of exogenous female sex steroid hormones in asthma development in women remains conflicting. We sought to quantify the potential causal role of hormonal contraceptives and menopausal hormone therapy (MHT) in the development of asthma in women.We conducted a matched case-control study based on the West Sweden Asthma Study, nested in a representative cohort of 15,003 women aged 16-75years, with 8-year follow-up (2008-2016). Data were analyzed using Frequentist and Bayesian conditional logistic regression models.We included 114 cases and 717 controls. In Frequentist analysis, the odds ratio (OR) for new-onset asthma with ever use of hormonal contraceptives was 2.13 (95% confidence interval [CI] 1.03-4.38). Subgroup analyses showed that the OR increased consistently with older baseline age. The OR for new-onset asthma with ever MHT use among menopausal women was 1.17 (95% CI 0.49-2.82). In Bayesian analysis, the ORs for ever use of hormonal contraceptives and MHT were, respectively, 1.11 (95% posterior interval [PI] 0.79-1.55) and 1.18 (95% PI 0.92-1.52). The respective probability of each OR being larger than 1 was 72.3% and 90.6%.Although use of hormonal contraceptives was associated with an increased risk of asthma, this may be explained by selection of women by baseline asthma status, given the upward trend in the effect estimate with older age. This indicates that use of hormonal contraceptives may in fact decrease asthma risk in women. Use of MHT may increase asthma risk in menopausal women.
  •  
11.
  • Ax, Elisabeth, et al. (författare)
  • T2 and T17 cytokines alter the cargo and function of airway epithelium-derived extracellular vesicles
  • 2020
  • Ingår i: Respiratory Research. - : Springer Science and Business Media LLC. - 1465-993X. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Asthma is a common and heterogeneous disease that includes subgroups characterized by type 2 (T2) or type 17 (T17) immune responses for which there is a need to identify the underlying mechanisms and biomarkers in order to develop specific therapies. These subgroups can be defined by airway epithelium gene signatures and the airway epithelium has also been implicated to play a significant role in asthma pathology. Extracellular vesicles (EVs) carry functional biomolecules and participate in cell-to-cell communication in both health and disease, properties that are likely to be involved in airway diseases such as asthma. The aim of this study was to identify stimulus-specific proteins and functionality of bronchial epithelium-derived EVs following stimulation with T2 or T17 cytokines. Methods EVs from cytokine-stimulated (T2: IL-4 + IL-13 or T17: IL-17A + TNF alpha) human bronchial epithelial cells cultured at air-liquid interface (HBEC-ALI) were isolated by density cushion centrifugation and size exclusion chromatography and characterized with Western blotting and electron microscopy. Transcriptomic (cells) and proteomic (EVs) profiling was also performed. Results Our data shows that EVs are secreted and can be isolated from the apical side of HBEC-ALI and that cytokine stimulation increases EV release. Genes upregulated in cells stimulated with T2 or T17 cytokines were increased also on protein level in the EVs. Proteins found in T17-derived EVs were suggested to be involved in pathways related to neutrophil movement which was supported by assessing neutrophil chemotaxis ex vivo. Conclusions Together, the results suggest that epithelial EVs are involved in airway inflammation and that the EV proteome may be used for discovery of disease-specific mechanisms and signatures which may enable a precision medicine approach to the treatment of asthma.
  •  
12.
  • Bandeira, Elga, et al. (författare)
  • Effects of mesenchymal stem cell-derived nanovesicles in experimental allergic airway inflammation
  • 2023
  • Ingår i: Respiratory Research. - : Springer Science and Business Media LLC. - 1465-9921 .- 1465-993X. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Allergic asthma is associated with airflow obstruction and hyper-responsiveness that arises from airway inflammation and remodeling. Cell therapy with mesenchymal stem cells (MSC) has been shown to attenuate inflammation in asthma models, and similar effects have recently been observed using extracellular vesicles (EV) obtained from these cells. Biologically functional vesicles can also be artificially generated from MSC by extruding cells through membranes to produce EV-mimetic nanovesicles (NV). In this study, we aimed to determine the effects of different MSC-derived vesicles in a murine model of allergic airway inflammation.Methods EV were obtained through sequential centrifugation of serum-free media conditioned by human bone marrow MSC for 24 h. NV were produced through serial extrusion of the whole cells through filters. Both types of vesicles underwent density gradient purification and were quantified through nanoparticle tracking analysis. C57BL/6 mice were sensitized to ovalbumin (OVA, 8 mu g), and then randomly divided into the OVA group (intranasally exposed to 100 mu g OVA for 5 days) and control group (exposed to PBS). The mice were then further divided into groups that received 2 x 10(9) EV or NV (intranasally or intraperitoneally) or PBS immediately following the first OVA exposure.Results Administration of EV and NV reduced cellularity and eosinophilia in bronchoalveolar lavage (BAL) fluid in OVA-sensitized and OVA-exposed mice. In addition, NV treatment resulted in decreased numbers of inflammatory cells within the lung tissue, and this was associated with lower levels of Eotaxin-2 in both BAL fluid and lung tissue. Furthermore, both intranasal and systemic administration of NV were effective in reducing inflammatory cells; however, systemic delivery resulted in a greater reduction of eosinophilia in the lung tissue.Conclusions Taken together, our results indicate that MSC-derived NV significantly reduce OVA-induced allergic airway inflammation to a level comparable to EV. Thus, cell-derived NV may be a novel EV-mimetic therapeutic candidate for treating allergic diseases such as asthma.
  •  
13.
  • Clayton, A., et al. (författare)
  • Considerations towards a roadmap for collection, handling and storage of blood extracellular vesicles
  • 2019
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an increasing interest in exploring clinically relevant information that is present in body fluids, and extracellular vesicles (EVs) are intrinsic components of body fluids ("liquid biopsies"). In this report, we will focus on blood. Blood contains not only EVs but also cells, and non-EV particles including lipoproteins. Due to the high concentration of soluble proteins and lipoproteins, blood, plasma and serum have a high viscosity and density, which hampers the concentration, isolation and detection of EVs. Because most if not all studies on EVs are single-centre studies, their clinical relevance remains limited. Therefore, there is an urgent need to improve standardization and reproducibility of EV research. As a first step, the International Society on Extracellular Vesicles organized a biomarker workshop in Birmingham (UK) in November 2017, and during that workshop several working groups were created to focus on a particular body fluid. This report is the first output of the blood EV work group and is based on responses by work group members to a questionnaire in order to discover the contours of a roadmap. From the answers it is clear that most respondents are in favour of evidence-based research, education, quality control procedures, and physical models to improve our understanding and comparison of concentration, isolation and detection methods. Since blood is such a complex body fluid, we assume that the outcome of the survey may also be valuable for exploring body fluids other than blood.
  •  
14.
  • Clayton, Aled, et al. (författare)
  • Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017
  • 2018
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 7
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles. This report summarises the presentations and activities of the ISEV Workshop on extracellular vesicle biomarkers held in Birmingham, UK during December 2017. Among the key messages was broad agreement about the importance of biospecimen science. Much greater attention needs to be paid towards the provenance of collected samples. The workshop also highlighted clear gaps in our knowledge about pre-analytical factors that alter extracellular vesicles (EVs). The future utility of certified standards for credentialing of instruments and software, to analyse EV and for tracking the influence of isolation steps on the structure and content of EVs were also discussed. Several example studies were presented, demonstrating the potential utility for EVs in disease diagnosis, prognosis, longitudinal serial testing and stratification of patients. The conclusion of the workshop was that more effort focused on pre-analytical issues and benchmarking of isolation methods is needed to strengthen collaborations and advance more effective biomarkers.
  •  
15.
  • Crescitelli, Rossella, 1985, et al. (författare)
  • Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes.
  • 2013
  • Ingår i: Journal of extracellular vesicles. - : Wiley. - 2001-3078. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: In recent years, there has been an exponential increase in the number of studies aiming to understand the biology of exosomes, as well as other extracellular vesicles. However, classification of membrane vesicles and the appropriate protocols for their isolation are still under intense discussion and investigation. When isolating vesicles, it is crucial to use systems that are able to separate them, to avoid cross-contamination. METHOD: EVS RELEASED FROM THREE DIFFERENT KINDS OF CELL LINES: HMC-1, TF-1 and BV-2 were isolated using two centrifugation-based protocols. In protocol 1, apoptotic bodies were collected at 2,000×g, followed by filtering the supernatant through 0.8 µm pores and pelleting of microvesicles at 12,200×g. In protocol 2, apoptotic bodies and microvesicles were collected together at 16,500×g, followed by filtering of the supernatant through 0.2 µm pores and pelleting of exosomes at 120,000×g. Extracellular vesicles were analyzed by transmission electron microscopy, flow cytometry and the RNA profiles were investigated using a Bioanalyzer(®). RESULTS: RNA profiles showed that ribosomal RNA was primary detectable in apoptotic bodies and smaller RNAs without prominent ribosomal RNA peaks in exosomes. In contrast, microvesicles contained little or no RNA except for microvesicles collected from TF-1 cell cultures. The different vesicle pellets showed highly different distribution of size, shape and electron density with typical apoptotic body, microvesicle and exosome characteristics when analyzed by transmission electron microscopy. Flow cytometry revealed the presence of CD63 and CD81 in all vesicles investigated, as well as CD9 except in the TF-1-derived vesicles, as these cells do not express CD9. CONCLUSIONS: Our results demonstrate that centrifugation-based protocols are simple and fast systems to distinguish subpopulations of extracellular vesicles. Different vesicles show different RNA profiles and morphological characteristics, but they are indistinguishable using CD63-coated beads for flow cytometry analysis.
  •  
16.
  • Crescitelli, Rossella, 1985, et al. (författare)
  • Extracellular vesicle DNA from human melanoma tissues contains cancer-specific mutations
  • 2022
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media SA. - 2296-634X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Liquid biopsies are promising tools for early diagnosis and residual disease monitoring in patients with cancer, and circulating tumor DNA isolated from plasma has been extensively studied as it has been shown to contain tumor-specific mutations. Extracellular vesicles (EVs) present in tumor tissues carry tumor-derived molecules such as proteins and nucleic acids, and thus EVs can potentially represent a source of cancer-specific DNA. Here we identified the presence of tumor-specific DNA mutations in EVs isolated from six human melanoma metastatic tissues and compared the results with tumor tissue DNA and plasma DNA. Tumor tissue EVs were isolated using enzymatic treatment followed by ultracentrifugation and iodixanol density cushion isolation. A panel of 34 melanoma-related genes was investigated using ultra-sensitive sequencing (SiMSen-seq). We detected mutations in six genes in the EVs (BRAF, NRAS, CDKN2A, STK19, PPP6C, and RAC), and at least one mutation was detected in all melanoma EV samples. Interestingly, the mutant allele frequency was higher in DNA isolated from tumor-derived EVs compared to total DNA extracted directly from plasma DNA, supporting the potential role of tumor EVs as future biomarkers in melanoma.
  •  
17.
  • Crescitelli, Rossella, 1985, et al. (författare)
  • Isolation and characterization of extracellular vesicle subpopulations from tissues.
  • 2021
  • Ingår i: Nature protocols. - : Springer Science and Business Media LLC. - 1750-2799 .- 1754-2189. ; 16, s. 1548-1580
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs) are lipid bilayered membrane structures released by all cells. Most EV studies have been performed by using cell lines or body fluids, but the number of studies on tissue-derived EVs is still limited. Here, we present a protocol to isolate up to six different EV subpopulations directly from tissues. The approach includes enzymatic treatment of dissociated tissues followed by differential ultracentrifugation and density separation. The isolated EV subpopulations are characterized by electron microscopy and RNA profiling. In addition, their protein cargo can be determined with mass spectrometry, western blot and ExoView. Tissue-EV isolation can be performed in 22 h, but a simplified version can be completed in 8 h. Most experiments with the protocol have used human melanoma metastases, but the protocol can be applied to other cancer and non-cancer tissues. The procedure can be adopted by researchers experienced with cell culture and EV isolation.
  •  
18.
  • Crescitelli, Rossella, 1985, et al. (författare)
  • Subpopulations of extracellular vesicles from human metastatic melanoma tissue identified by quantitative proteomics after optimized isolation
  • 2020
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of extracellular vesicle (EV) studies conducted to date have been performed on cell lines with little knowledge on how well these represent the characteristics of EVs in vivo. The aim of this study was to establish a method to isolate and categorize subpopulations of EVs isolated directly from tumour tissue. First we established an isolation protocol for subpopulations of EVs from metastatic melanoma tissue, which included enzymatic treatment (collagenase D and DNase). Small and large EVs were isolated with differential ultracentrifugation, and these were further separated into high and low-density (HD and LD) fractions. All EV subpopulations were then analysed in depth using electron microscopy, Bioanalyzer (R), nanoparticle tracking analysis, and quantitative mass spectrometry analysis. Subpopulations of EVs with distinct size, morphology, and RNA and protein cargo could be isolated from the metastatic melanoma tissue. LD EVs showed an RNA profile with the presence of 18S and 28S ribosomal subunits. In contrast, HD EVs had RNA profiles with small or no peaks for ribosomal RNA subunits. Quantitative proteomics showed that several proteins such as flotillin-1 were enriched in both large and small LD EVs, while ADAM10 were exclusively enriched in small LD EVs. In contrast, mitofilin was enriched only in the large EVs. We conclude that enzymatic treatments improve EV isolation from dense fibrotic tissue without any apparent effect on molecular or morphological characteristics. By providing a detailed categorization of several subpopulations of EVs isolated directly from tumour tissues, we might better understand the function of EVs in tumour biology and their possible use in biomarker discovery.
  •  
19.
  • Cvjetkovic, Aleksander, et al. (författare)
  • Detailed Analysis of Protein Topology of Extracellular Vesicles–Evidence of Unconventional Membrane Protein Orientation
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs) are important mediators of intercellular communication that change the recipient cell by shuttling lipids, RNA, or protein cargo between cells. Here, we investigate the topology of the protein cargo found in EVs, as this topology can fundamentally influence the biological effects of EVs. A multiple proteomics approach, combining proteinase treatment and biotin tagging, shows that many proteins of cytosolic origin are localized on the surface of EVs. A detailed analysis of the EV proteome at the peptide level revealed that a number of EV membrane proteins are present in a topologically reversed orientation compared to what is annotated. Two examples of such proteins, SCAMP3 and STX4, were confirmed to have a reversed topology. This reversed typology was determined using flow cytometry and fluorescent microscopy with antibodies directed toward their cytoplasmic epitopes. These results describe a novel workflow to define the EV proteome and the orientation of each protein, including membrane protein topology. These data are fundamentally important to understanding the EV proteome and required to fully explain EV biogenesis as well as biological function in recipient cells.
  •  
20.
  • Cvjetkovic, Aleksander, et al. (författare)
  • Extracellular vesicles in motion
  • 2017
  • Ingår i: Science Matters. - : Sciencematters. - 2297-8240 .- 2297-9239.
  • Tidskriftsartikel (refereegranskat)abstract
    • By secreting extracellular vesicles (EVs), including exosomes and microvesicles, into the extracellular milieu, cells can convey complex biological messages between each other. These vesicles are generally thought to be static packages lacking the flexibility of their parental cells in terms of motility and the ability to change shape. However, cryo-electron micrographs reveal the presence of actin-like filaments in a subpopulation of EVs, raising the question if these vesicles could possess motile capabilities similar to that produced by actin in cells. We here show that fluorescently labeled EVs change their shape in a matter of minutes, regardless of whether they are isolated from human body fluids, mouse tissue or cell culture of human cells or yeast. Our findings therefore cast doubt on movement being confined to cells, suggesting that some EVs indeed have an intrinsic capacity to move. This novel observation showing morphological plasticity among EVs adds another level of complexity to the already multifaceted vesicular secretome, and may lead to new ways in which we perceive these nano-carriers of intercellular signals.
  •  
21.
  •  
22.
  • Cvjetkovic, Aleksander, et al. (författare)
  • The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles.
  • 2014
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Extracellular vesicles (EV), the collective term for vesicles released from cells, consist of vesicle species ranging in size from 30 nm to 5 µm in diameter. These vesicles are most commonly isolated by differential centrifugations, which pellets particles based on their differential movement through the liquid medium in which they are immersed. Multiple parameters, including the utilization of different rotor types, can influence the yield and purity of isolated vesicles; however, the understanding of how these factors affect is limited. MATERIALS AND METHODS: Here, we compare the influence of multiple centrifugation parameters, including the use of swinging bucket and fixed angle rotors, as well as different centrifugation times, for the isolation of the smallest EVs, "exosomes." In particular, we determine the yields of exosomal RNA and protein, as well as the nature of the isolated vesicles and possible protein contamination with methods such as electron microscopy, western blot and flow cytometry. RESULTS: Our results show that application of a specific g-force or rotation speed by itself does not predict the ability of pelleting exosomes, and that prolonged centrifugation times can achieve greater yields of exosomal RNA and protein, whereas very long centrifugation times result in excessive protein concentrations in the exosome pellet. CONCLUSION: In conclusion, rotor type, g-force and centrifugation times significantly influence exosome yield during centrifugation-based isolation procedures, and current commonly recommended isolation protocols may not be fully optimized for yield and purity of exosomes.
  •  
23.
  • Ekström, Karin, 1977, et al. (författare)
  • Characterization of surface markers on extracellular vesicles isolated from lymphatic exudate from patients with breast cancer
  • 2022
  • Ingår i: Bmc Cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Breast cancer is the most common cancer, and the leading cause of cancer-related deaths, among females world-wide. Recent research suggests that extracellular vesicles (EVs) play a major role in the development of breast cancer metastasis. Axillary lymph node dissection (ALND) is a procedure in patients with known lymph node metastases, and after surgery large amounts of serous fluid are produced from the axilla. The overall aim was to isolate and characterize EVs from axillary serous fluid, and more specifically to determine if potential breast cancer biomarkers could be identified. Methods Lymphatic drain fluid was collected from 7 patients with breast cancer the day after ALND. EVs were isolated using size exclusion chromatography, quantified and detected by nanoparticle tracking analysis, electron microscopy, nano flow cytometry and western blot. The expression of 37 EV surface proteins was evaluated by flow cytometry using the MACSPlex Exosome kit. Results Lymphatic drainage exudate retrieved after surgery from all 7 patients contained EVs. The isolated EVs were positive for the typical EV markers CD9, CD63, CD81 and Flotillin-1 while albumin was absent, indicating low contamination from blood proteins. In total, 24 different EV surface proteins were detected. Eleven of those proteins were detected in all patients, including the common EV markers CD9, CD63 and CD81, cancer-related markers CD24, CD29, CD44 and CD146, platelet markers CD41b, CD42a and CD62p as well as HLA-DR/DP/DQ. Furthermore, CD29 and CD146 were enriched in Her2+ patients compared to patients with Her2- tumors. Conclusions Lymphatic drainage exudate retrieved from breast cancer patients after surgery contains EVs that can be isolated using SEC isolation. The EVs have several cancer-related markers including CD24, CD29, CD44 and CD146, proteins of potential interest as biomarkers as well as to increase the understanding of the mechanisms of cancer biology.
  •  
24.
  • Eldh, Maria, 1980, et al. (författare)
  • MicroRNA in exosomes isolated directly from the liver circulation in patients with metastatic uveal melanoma
  • 2014
  • Ingår i: BMC Cancer. - London : Springer Science and Business Media LLC. - 1471-2407. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Uveal melanoma is a tumour arising from melanocytes of the eye, and 30 per cent of these patients develop liver metastases. Exosomes are small RNA containing nano-vesicles released by most cells, including malignant melanoma cells. This clinical translational study included patients undergoing isolated hepatic perfusion (IHP) for metastatic uveal melanoma, from whom exosomes were isolated directly from liver perfusates. The objective was to determine whether exosomes are present in the liver circulation, and to ascertain whether these may originate from melanoma cells.
  •  
25.
  • Grenier-Pleau, I., et al. (författare)
  • Blood extracellular vesicles from healthy individuals regulate hematopoietic stem cells as humans age
  • 2020
  • Ingår i: Aging Cell. - : Wiley. - 1474-9718 .- 1474-9726. ; 19:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic stem cells (HSCs) maintain balanced blood cell production in a process called hematopoiesis. As humans age, their HSCs acquire mutations that allow some HSCs to disproportionately contribute to normal blood production. This process, known as age-related clonal hematopoiesis, predisposes certain individuals to cancer, cardiovascular and pulmonary pathologies. There is a growing body of evidence suggesting that factors outside cells, such as extracellular vesicles (EVs), contribute to the disruption of stem cell homeostasis during aging. We have characterized blood EVs from humans and determined that they are remarkably consistent with respect to size, concentration, and total protein content, across healthy subjects aged 20-85 years. When analyzing EV protein composition from mass spectroscopy data, our machine-learning-based algorithms are able to distinguish EV proteins based on age and suggest that different cell types dominantly produce EVs released into the blood, which change over time. Importantly, our data show blood EVs from middle and older age groups (>40 years) significantly stimulate HSCs in contrast to untreated and EVs sourced from young subjects. Our study establishes for the first time that although EV particle size, concentration, and total protein content remain relatively consistent over an adult lifespan in humans, EV content evolves during aging and potentially influences HSC regulation.
  •  
26.
  • Hendrix, A., et al. (författare)
  • Extracellular vesicle analysis
  • 2023
  • Ingår i: Nature Reviews Methods Primers. - 2662-8449. ; 3:1
  • Forskningsöversikt (refereegranskat)abstract
    • Cells release small, phospholipid membrane-enclosed particles, collectively referred to as extracellular vesicles (EVs), into their surroundings to enable intercellular communication. EVs have numerous functions in physiological and pathophysiological processes and show considerable promise for diagnostic and therapeutic applications. Technologies have rapidly evolved over the past two decades, providing a powerful, versatile toolset for preparing and characterizing EVs to facilitate research and translational efforts. However, considering the plethora of methods available, it is challenging to understand what makes one method more suited for a given experiment than another. The heterogeneity of EVs as well as the diversity in composition of their surroundings further add to this challenge. This Primer provides guidance for EV analysis across ecosystems, including accessible body- and environment-derived sources. We summarize the multi-step process of EV preparation, cover the guiding principles and considerations when performing and interpreting EV experiments, and reflect on the limitations and challenges in the fields of fundamental biology, biomarker development and therapeutic strategies. Extracellular vesicles (EVs) have vital functions and promise diagnostic and therapeutic applications. In this Primer, Hendrix and colleagues discuss tools for isolating and characterizing EVs obtained from various sources, including the body and the environment.
  •  
27.
  • Hui, Xiao, et al. (författare)
  • Mast cell exosomes promote lung adenocarcinoma cell proliferation - role of KIT-stem cell factor signaling
  • 2014
  • Ingår i: Cell Communication and Signaling. - 1478-811X. ; 12:64
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Human cells release nano-sized vesicles called exosomes, containing mRNA, miRNA and specific proteins. Exosomes from one cell can be taken up by another cell, which is a recently discovered cell-to-cell communication mechanism. Also, exosomes can be taken up by different types of cancer cells, but the potential functional effects of mast cell exosomes on tumor cells remain unknown. Methods and results Exosomes were isolated from the human mast cell line, HMC-1, and uptake of PKH67-labelled exosomes by the lung epithelial cell line, A549, was examined using flow cytometry and fluorescence microscopy. The RNA cargo of the exosomes was analyzed with a Bioanalyzer and absence or presence of the c-KIT mRNA was determined by RT-PCR. The cell proliferation was determined in a BrdU incorporation assay, and proteins in the KIT-SCF signaling pathway were detected by Western blot. Our result demonstrates that exosomes from mast cells can be taken up by lung cancer cells. Furthermore, HMC-1 exosomes contain and transfer KIT protein, but not the c-KIT mRNA to A549 cells and subsequently activate KIT-SCF signal transduction, which increase cyclin D1 expression and accelerate the proliferation in the human lung adenocarcinoma cells. Conclusions Our results indicate that exosomes can transfer KIT as a protein to tumor cells, which can affect recipient cell signaling events through receptor-ligand interactions.
  •  
28.
  • Karimi, Nasibeh, et al. (författare)
  • Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins
  • 2018
  • Ingår i: Cellular and Molecular Life Sciences. - : Springer Science and Business Media LLC. - 1420-682X .- 1420-9071. ; 75:15, s. 2873-2886
  • Tidskriftsartikel (refereegranskat)abstract
    • The isolation of extracellular vesicles (EVs) from blood is of great importance to understand the biological role of circulating EVs and to develop EVs as biomarkers of disease. Due to the concurrent presence of lipoprotein particles, however, blood is one of the most difficult body fluids to isolate EVs from. The aim of this study was to develop a robust method to isolate and characterise EVs from blood with minimal contamination by plasma proteins and lipoprotein particles. Plasma and serum were collected from healthy subjects, and EVs were isolated by size-exclusion chromatography (SEC), with most particles being present in fractions 8-12, while the bulk of the plasma proteins was present in fractions 11-28. Vesicle markers peaked in fractions 7-11; however, the same fractions also contained lipoprotein particles. The purity of EVs was improved by combining a density cushion with SEC to further separate lipoprotein particles from the vesicles, which reduced the contamination of lipoprotein particles by 100-fold. Using this novel isolation procedure, a total of 1187 proteins were identified in plasma EVs by mass spectrometry, of which several proteins are known as EV-associated proteins but have hitherto not been identified in the previous proteomic studies of plasma EVs. This study shows that SEC alone is unable to completely separate plasma EVs from lipoprotein particles. However, combining SEC with a density cushion significantly improved the separation of EVs from lipoproteins and allowed for a detailed analysis of the proteome of plasma EVs, thus making blood a viable source for EV biomarker discovery.
  •  
29.
  • Karimi, Nasibeh, et al. (författare)
  • Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma - Contributions of platelet extracellular vesicles in plasma samples
  • 2022
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 11:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The ability to isolate extracellular vesicles (EVs) from blood is vital in the development of EVs as disease biomarkers. Both serum and plasma can be used, but few studies have compared these sources in terms of the type of EVs that are obtained. The aim of this study was to determine the presence of different subpopulations of EVs in plasma and serum. Method: Blood was collected from healthy subjects, and plasma and serum were isolated in parallel. ACD or EDTA tubes were used for the collection of plasma, while serum was obtained in clot activator tubes. EVs were isolated utilising a combination of density cushion and SEC, a combination of density cushion and gradient or by a bead antibody capturing system (anti-CD63, anti-CD9 and anti-CD81 beads). The subpopulations of EVs were analysed by NTA, Western blot, SP-IRIS, conventional and nano flow cytometry, magnetic bead E LISA and mass spectrometry. Additionally, different isolation protocols for plasma were compared to determine the contribution of residual platelets in the analysis. Results: This study shows that a higher number of CD9(+) EVs were present in EDTA-plasma compared to ACD-plasma and to serum, and the presence of CD41a on these EVs suggests that they were released from platelets. Furthermore, only a very small number of EVs in blood were double-positive for CD63 and CD81. The CD63(+) EVs were enriched in serum, while CD81(+) vesicles were the rarest subpopulation in both plasma and serum. Additionally, EDTA-plasma contained more residual platelets than ACD-plasma and serum, and two centrifugation steps were crucial to reduce the number of platelets in plasma prior to EV isolation. Conclusion: These results show that human blood contains multiple subpopulations of EVs that carry different tetraspanins. Blood sampling methods, including the use of anti-coagulants and choice of centrifugation protocols, can affect EV analyses and should always be reported in detail.
  •  
30.
  • Kim, Dae-Kyum, et al. (författare)
  • EVpedia: A Community Web Portal for Extracellular Vesicles Research
  • 2015
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 31:6, s. 933-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. Results: We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research.
  •  
31.
  • Lázaro-Ibáñez, Elisa, et al. (författare)
  • DNA analysis of low- and high-density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology
  • 2019
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles have the capacity to transfer lipids, proteins, and nucleic acids between cells, thereby influencing the recipient cell's phenotype. While the role of RNAs in EVs has been extensively studied, the function of DNA remains elusive. Here, we distinguished novel heterogeneous subpopulations of small extracellular vesicles (sEVs) based on their DNA content and topology. Low- and high-density sEV subsets from a human mast cell line (HMC-1) and an erythroleukemic cell line (TF-1) were separated using high-resolution iodixanol density gradients to discriminate the nature of the DNA cargo of the sEVs. Paired comparisons of the sEV-associated DNA and RNA molecules showed that RNA was more abundant than DNA and that most of the DNA was present in the high-density fractions, demonstrating that sEV subpopulations have different DNA content. DNA was predominately localised on the outside or surface of sEVs, with only a small portion being protected from enzymatic degradation. Whole-genome sequencing identified DNA fragments spanning all chromosomes and mitochondrial DNA when sEVs were analysed in bulk. Our work contributes to the understanding of how DNA is associated with sEVs and thus provides direction for distinguishing subtypes of EVs based on their DNA cargo and topology.
  •  
32.
  • Lischnig, Anna, 1998, et al. (författare)
  • Quantitative Proteomics Identifies Proteins Enriched in Large and Small Extracellular Vesicles
  • 2022
  • Ingår i: Molecular & Cellular Proteomics. - : Elsevier BV. - 1535-9476 .- 1535-9484. ; 21:9
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a long-held consensus that several proteins are unique to small extracellular vesicles (EVs), such as exosomes. However, recent studies have shown that several of these markers can also be present in other subpopulations of EVs to a similar degree. Furthermore, few markers have been identified as enriched or uniquely present in larger EVs, such as microvesicles. The aim of this study was to address these issues by conducting an in-depth comparison of the proteome of large and small EVs. Large (16,500g) and small EVs (118,000g) were isolated from three cell lines using a combination of differential ultracentrifugation and a density cushion and quantitative mass spectrometry (tandem mass tag-liquid chromatography-tandem mass spectrometry) was used to identify differently enriched proteins in large and small EVs. In total, 6493 proteins were quantified, with 818 and 1567 proteins significantly enriched in small and large EVs, respectively. Tetraspanins, ADAMs and ESCRT proteins, as well as SNAREs and Rab proteins associated with endosomes were enriched in small EVs compared with large EVs, whereas ribosomal, mitochondrial, and nuclear proteins, as well as proteins involved in cytokinesis, were enriched in large EVs compared with small EVs. However, Flotillin-1 was not differently expressed in large and small EVs. In conclusion, our study shows that the proteome of large and small EVs are substantially dissimilar. We validated several proteins previously suggested to be enriched in either small or large EVs (e.g., ADAM10 and Mitofilin, respectively), and we suggest several additional novel protein markers.
  •  
33.
  • Lucien, Fabrice, et al. (författare)
  • MIBlood-EV: Minimal information to enhance the quality and reproducibility of blood extracellular vesicle research
  • 2023
  • Ingår i: Journal of Extracellular Vesicles. - 2001-3078. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood is the most commonly used body fluid for extracellular vesicle (EV) research. The composition of a blood sample and its derivatives (i.e., plasma and serum) are not only donor-dependent but also influenced by collection and preparation protocols. Since there are hundreds of pre-analytical protocols and over forty variables, the development of standard operating procedures for EV research is very challenging. To improve the reproducibility of blood EV research, the International Society for Extracellular Vesicles (ISEV) Blood EV Task Force proposes standardized reporting of (i) the applied blood collection and preparation protocol and (ii) the quality of the prepared plasma and serum samples. Gathering detailed information will provide insight into the performance of the protocols and more effectively identify potential confounders in the prepared plasma and serum samples. To collect this information, the ISEV Blood EV Task Force created the Minimal Information for Blood EV research (MIBlood-EV), a tool to record and report information about pre-analytical protocols used for plasma and serum preparation as well as assays used to assess the quality of these preparations. This tool does not require modifications of established local pre-analytical protocols and can be easily implemented to enhance existing databases thereby enabling evidence-based optimization of pre-analytical protocols through meta-analysis. Taken together, insight into the quality of prepared plasma and serum samples will (i) improve the quality of biobanks for EV research, (ii) guide the exchange of plasma and serum samples between biobanks and laboratories, (iii) facilitate inter-laboratory comparative EV studies, and (iv) improve the peer review process.
  •  
34.
  • Lunavat, Taral R, et al. (författare)
  • BRAF(V600) inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 114:29
  • Tidskriftsartikel (refereegranskat)abstract
    • The BRAF inhibitors vemurafenib and dabrafenib can be used to treat patients with metastatic melanomas harboring BRAF(V600) mutations. Initial antitumoral responses are often seen, but drug-resistant clones with reactivation of the MEK-ERK pathway soon appear. Recently, the secretome of tumor-derived extracellular vesicles (EVs) has been ascribed important functions in cancers. To elucidate the possible functions of EVs in BRAF-mutant melanoma, we determined the RNA content of the EVs, including apoptotic bodies, microvesicles, and exosomes, released from such cancer cells after vemurafenib treatment. We found that vemurafenib significantly increased the total RNA and protein content of the released EVs and caused significant changes in the RNA profiles. RNA sequencing and quantitative PCR show that cells and EVs from vemurafenib-treated cell cultures and tumor tissues harvested from cell-derived and patient-derived xenografts harbor unique miRNAs, especially increased expression of miR-211-5p. Mechanistically, the expression of miR-211-5p as a result of BRAF inhibition was induced by increased expression of MITF that regulates the TRPM1 gene resulting in activation of the survival pathway. In addition, transfection of miR-211 in melanoma cells reduced the sensitivity to vemurafenib treatment, whereas miR-211-5p inhibition in a vemurafenib resistant cell line affected the proliferation negatively. Taken together, our results show that vemurafenib treatment induces miR-211-5p up-regulation in melanoma cells both in vitro and in vivo, as well as in subsets of EVs, suggesting that EVs may provide a tool to understand malignant melanoma progression.
  •  
35.
  • Lunavat, Taral R, et al. (författare)
  • RNAi delivery by exosome-mimetic nanovesicles - Implications for targeting c-Myc in cancer
  • 2016
  • Ingår i: Biomaterials. - : Elsevier BV. - 0142-9612. ; 102, s. 231-238
  • Tidskriftsartikel (refereegranskat)abstract
    • To develop RNA-based therapeutics, it is crucial to create delivery vectors that transport the RNA molecule into the cell cytoplasm. Naturally released exosomes vesicles (also called "Extracellular Vesicles") have been proposed as possible RNAi carriers, but their yield is relatively small in any cell culture system. We have previously generated exosome-mimetic nanovesicles (NV) by serial extrusions of cells through nano-sized filters, which results in 100-times higher yield of extracellular vesicles. We here test 1) whether NV can be loaded with siRNA exogenously and endogenously, 2) whether the siRNA-loaded NV are taken up by recipient cells, and 3) whether the siRNA can induce functional knock-down responses in recipient cells. A siRNA against GFP was first loaded into NV by electroporation, or a c-Myc shRNA was expressed inside of the cells. The NV were efficiently loaded with siRNA with both techniques, were taken up by recipient cells, which resulted in attenuation of target gene expression. In conclusion, our study suggests that exosome-mimetic nanovesicles can be a platform for RNAi delivery to cell cytoplasm.
  •  
36.
  •  
37.
  • Lässer, Cecilia, 1981 (författare)
  • Exosomal RNA as biomarkers and the therapeutic potential of exosome vectors.
  • 2012
  • Ingår i: Expert Opinion on Biological Therapy. - : Informa UK Limited. - 1471-2598 .- 1744-7682. ; 12:Sup1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Exosomes are nano-sized (40 – 100 nm), extracellular vesicles, of endosomal origin. They are released by cells and found in many body fluids, including plasma. Exosomes contain proteins, microRNAs (miRNAs), and messenger RNAs (mRNAs) that can be transferred between cells. The discovery that exosomes contain RNA, and that this encapsulated RNA could potentially be transferred over distances in vivo, reinforced the importance of exosomes in cell-to-cell communication. Areas covered: The existence of exosomes, as a naturally occurring delivery system of RNA, enables their use as both biomarkers and vectors in gene therapy. This review provides an overview of studies reporting that exosomal miRNA and mRNA in plasma can serve as a diagnostic marker in various types of cancers. In addition, the recent finding that exosomes can be used as vectors for delivery of small interfering RNA (siRNA) in mice, with therapeutic effects, is also reviewed. Expert opinion: The data reviewed here suggest that exosomal RNA has the potential to play an important role in the diagnosis, prognosis, and treatment of diseases in the future.
  •  
38.
  •  
39.
  • Lässer, Cecilia, 1981 (författare)
  • Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle
  • 2015
  • Ingår i: Expert Opinion on Biological Therapy. - : Informa UK Limited. - 1471-2598 .- 1744-7682. ; 15:1, s. 103-117
  • Forskningsöversikt (refereegranskat)abstract
    • Introduction: Cells release extracellular vesicles to their surroundings to communicate with each other. Exosomes are a subgroup of 30 – 100-nm-sized extracellular vesicles, originating from the endocytic pathway. They contain RNA molecules, proteins and lipids that can be transferred between cells. Exosomes have been found in several body fluids, indicating that this is a frequently used and tolerated system for cells to communicate RNA molecules and proteins over distances. Areas covered: It has been shown that patients with cancer have higher concentrations of exosomes in their blood and that these exosomes can carry tumor-specific molecules. Exosomes are, therefore, currently being evaluated for their potential use as biomarkers. Additionally, exosomes have been demonstrated to have the capacity to modulate immune responses. Therefore, exosomes are believed to be beneficial as a cell-free vaccine for cancer and infections. Further, as exosomes are the body’s endogenous system for transport RNA, exosomes are also evaluated for their potential use as a therapeutic RNA delivery system. This review provides an overview of studies reporting diagnostic and therapeutic potential for exosomes. Expert opinion: The data reviewed here suggest that exosomes have the potential to be used for both diagnosis and therapy for several diseases in the future.
  •  
40.
  • Lässer, Cecilia, 1981, et al. (författare)
  • Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages.
  • 2011
  • Ingår i: Journal of Translational Medicine. - : Springer Science and Business Media LLC. - 1479-5876. ; 9:9
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Exosomes are 30-100 nm membrane vesicles of endocytic origin produced by numerous cells. They can mediate diverse biological functions, including antigen presentation. Exosomes have recently been shown to contain functional RNA, which can be delivered to other cells. Exosomes may thus mediate biological functions either by surface-to-surface interactions with cells, or by the delivery of functional RNA to cells. Our aim was therefore to determine the presence of RNA in exosomes from human saliva, plasma and breast milk and whether these exosomes can be taken up by macrophages. METHOD: Exosomes were purified from human saliva, plasma and breast milk using ultracentrifugation and filtration steps. Exosomes were detected by electron microscopy and examined by flow cytometry. Flow cytometry was performed by capturing the exosomes on anti-MHC class II coated beads, and further stain with anti-CD9, anti-CD63 or anti-CD81. Breast milk exosomes were further analysed for the presence of Hsc70, CD81 and calnexin by Western blot. Total RNA was detected with a Bioanalyzer and mRNA was identified by the synthesis of cDNA using an oligo (dT) primer and analysed with a Bioanalyzer. The uptake of PKH67-labelled saliva and breast milk exosomes by macrophages was examined by measuring fluorescence using flow cytometry and fluorescence microscopy. RESULTS: RNA was detected in exosomes from all three body fluids. A portion of the detected RNA in plasma exosomes was characterised as mRNA. Our result extends the characterisation of exosomes in healthy humans and confirms the presence of RNA in human saliva and plasma exosomes and reports for the first time the presence of RNA in breast milk exosomes. Our results also show that the saliva and breast milk exosomes can be taken up by human macrophages. CONCLUSIONS: Exosomes in saliva, plasma and breast milk all contain RNA, confirming previous findings that exosomes from several sources contain RNA. Furthermore, exosomes are readily taken up by macrophages, supporting the notion that exosomal RNA can be shuttled between cells.
  •  
41.
  •  
42.
  • Lässer, Cecilia, 1981, et al. (författare)
  • Immune-Associated Proteins Are Enriched in Lung Tissue-Derived Extracellular Vesicles during Allergen-Induced Eosinophilic Airway Inflammation
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 22:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying the proteomes of tissue-derived extracellular vesicles (EVs) can lead to the identification of biomarkers of disease and can provide a better understanding of cell-to-cell communication in both healthy and diseased tissue. The aim of this study was to apply our previously established tissue-derived EV isolation protocol to mouse lungs in order to determine the changes in the proteomes of lung tissue-derived EVs during allergen-induced eosinophilic airway inflammation. A mouse model for allergic airway inflammation was used by sensitizing the mice intraperitoneal with ovalbumin (OVA), and one week after the final sensitization, the mice were challenged intranasal with OVA or PBS. The animals were sacrificed 24 h after the final challenge, and their lungs were removed and sliced into smaller pieces that were incubated in culture media with DNase I and Collagenase D for 30 min at 37 °C. Vesicles were isolated from the medium by ultracentrifugation and bottom-loaded iodixanol density cushions, and the proteomes were determined using quantitative mass spectrometry. More EVs were present in the lungs of the OVA-challenged mice compared to the PBS-challenged control mice. In total, 4510 proteins were quantified in all samples. Among them, over 1000 proteins were significantly altered (fold change >2), with 614 proteins being increased and 425 proteins being decreased in the EVs from OVA-challenged mice compared to EVs from PBS-challenged animals. The associated cellular components and biological processes were analyzed for the altered EV proteins, and the proteins enriched during allergen-induced airway inflammation were mainly associated with gene ontology (GO) terms related to immune responses. In conclusion, EVs can be isolated from mouse lung tissue, and the EVs' proteomes undergo changes in response to allergen-induced airway inflammation. This suggests that the composition of lung-derived EVs is altered in diseases associated with inflammation of the lung, which may have implications in type-2 driven eosinophilic asthma pathogenesis.
  •  
43.
  • Lässer, Cecilia, 1981, et al. (författare)
  • Isolation and characterization of RNA-containing exosomes.
  • 2012
  • Ingår i: Journal of Visualized Experiments (JoVE). - : MyJove Corporation. - 1940-087X. ; 59
  • Tidskriftsartikel (refereegranskat)abstract
    • The field of exosome research is rapidly expanding, with a dramatic increase in publications in recent years. These small vesicles (30-100 nm) of endocytic origin were first proposed to function as a way for reticulocytes to eradicate the transferrin receptor while maturing into erythrocytes, and were later named exosomes. Exosomes are formed by inward budding of late endosomes, producing multivesicular bodies (MVBs), and are released into the environment by fusion of the MVBs with the plasma membrane. Since the first discovery of exosomes, a wide range of cells have been shown to release these vesicles. Exosomes have also been detected in several biological fluids, including plasma, nasal lavage fluid, saliva and breast milk. Furthermore, it has been demonstrated that the content and function of exosomes depends on the originating cell and the conditions under which they are produced. A variety of functions have been demonstrated for exosomes, such as induction of tolerance against allergen, eradication of established tumors in mice, inhibition and activation of natural killer cells, promotion of differentiation into T regulatory cells, stimulation of T cell proliferation and induction of T cell apoptosis. Year 2007 we demonstrated that exosomes released from mast cells contain messenger RNA (mRNA) and microRNA (miRNA), and that the RNA can be shuttled from one cell to another via exosomes. In the recipient cells, the mRNA shuttled by exosomes was shown to be translated into protein, suggesting a regulatory function of the transferred RNA. Further, we have also shown that exosomes derived from cells grown under oxidative stress can induce tolerance against further stress in recipient cells and thus suggest a biological function of the exosomal shuttle RNA. Cell culture media and biological fluids contain a mixture of vesicles and shed fragments. A high quality isolation method for exosomes, followed by characterization and identification of the exosomes and their content, is therefore crucial to distinguish exosomes from other vesicles and particles. Here, we present a method for the isolation of exosomes from both cell culture medium and body fluids. This isolation method is based on repeated centrifugation and filtration steps, followed by a final ultracentrifugation step in which the exosomes are pelleted. Important methods to identify the exosomes and characterize the exosomal morphology and protein content are highlighted, including electron microscopy, flow cytometry and Western blot. The purification of the total exosomal RNA is based on spin column chromatography and the exosomal RNA yield and size distribution is analyzed using a Bioanalyzer.
  •  
44.
  • Lässer, Cecilia, 1981 (författare)
  • Mapping Extracellular RNA Sheds Lights on Distinct Carriers
  • 2019
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674. ; 177:2, s. 228-230
  • Tidskriftsartikel (refereegranskat)abstract
    • Circulating extracellular RNA can participate in cell-to-cell communication and can be used as a marker of disease. Currently, biological and technical variability prevents the field from reaching its full potential. In this issue of Cell and the April 24 issue of Cell Systems, three studies by the Extracellular RNA Communication Consortium (ERCC) (Murillo et al., 2019; Srinivasan et al., 2019; Rozowsky et al., 2019) address several aspects contributing to this variability and provide knowledge and platforms for empowering future studies.
  •  
45.
  • Lässer, Cecilia, 1981, et al. (författare)
  • Subpopulations of extracellular vesicles and their therapeutic potential
  • 2018
  • Ingår i: Molecular Aspects of Medicine. - : Elsevier BV. - 0098-2997. ; 60, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs), such as exosomes and microvesicles, have over the last 10-15 years been recognized to convey key messages in the molecular communication between cells. Indeed, EVs have the capacity to shuttle proteins, lipids, and nucleotides such as RNA between cells, leading to an array of functional changes in the recipient cells. Importantly, the EV secretome changes significantly in diseased cells and under conditions of cellular stress. More recently, it has become evident that the EV secretome is exceptionally diverse, with many different types of EVs being released by a single cell type, and these EVs can be described in terms of differences in density, molecular cargos, and morphology. This review will discuss the diversity of EVs, will introduce some suggestions for how to categorize them, and will propose how EVs and their subpopulations might be used for very different therapeutic purposes.
  •  
46.
  • Lässer, Cecilia, 1981, et al. (författare)
  • The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles.
  • 2016
  • Ingår i: Journal of extracellular vesicles. - : Wiley. - 2001-3078 .- 2001-3078. ; 5
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.
  •  
47.
  • Lässer, Cecilia, 1981, et al. (författare)
  • The Role of Exosomal Shuttle RNA (esRNA) in Cell-to-Cell Communication
  • 2013
  • Ingår i: Emerging Concepts of Tumor Exosome–Mediated Cell-Cell Communication. - New York, NY : Springer. - 9781461436966 ; , s. 33-45
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Cell-to-cell communication can occur in several ways, with or without cell contact. Exosomes play a role in one of the most recently discovered and versatile cell-to-cell communications, which do not require cell contact and that can act over long distances. The RNA content, mRNA and microRNA, is protected by the exosomes rigid membranes, which makes it possible for cells to communicate long-distance RNA messages via the circulation system. Their mRNA content differs substantially from their mother cell mRNA content, whereas their microRNA content seems to reflect their cellular origin more. This chapter reviews the role of exosomes in cell-to-cell communication and in particular the role of exosomal shuttle RNA (esRNA). This is a new and rapidly expanding field of research that has given cell-to-cell communication an increased complexity and that has great potential within both diagnostic and therapeutic applications.
  •  
48.
  • Lässer, Cecilia, 1981, et al. (författare)
  • Two distinct extracellular RNA signatures released by a single cell type identified by microarray and next-generation sequencing.
  • 2017
  • Ingår i: RNA biology. - : Informa UK Limited. - 1555-8584 .- 1547-6286. ; 14:1, s. 58-72
  • Tidskriftsartikel (refereegranskat)abstract
    • Cells secrete extracellular RNA (exRNA) to their surrounding environment and exRNA has been found in many body fluids such as blood, breast milk and cerebrospinal fluid. However, there are conflicting results regarding the nature of exRNA. Here, we have separated 2 distinct exRNA profiles released by mast cells, here termed high-density (HD) and low-density (LD) exRNA. The exRNA in both fractions was characterized by microarray and next-generation sequencing. Both exRNA fractions contained mRNA and miRNA, and the mRNAs in the LD exRNA correlated closely with the cellular mRNA, whereas the HD mRNA did not. Furthermore, the HD exRNA was enriched in lincRNA, antisense RNA, vault RNA, snoRNA, and snRNA with little or no evidence of full-length 18S and 28S rRNA. The LD exRNA was enriched in mitochondrial rRNA, mitochondrial tRNA, tRNA, piRNA, Y RNA, and full-length 18S and 28S rRNA. The proteomes of the HD and LD exRNA-containing fractions were determined with LC-MS/MS and analyzed with Gene Ontology term finder, which showed that both proteomes were associated with the term extracellular vesicles and electron microscopy suggests that at least a part of the exRNA is associated with exosome-like extracellular vesicles. Additionally, the proteins in the HD fractions tended to be associated with the nucleus and ribosomes, whereas the LD fraction proteome tended to be associated with the mitochondrion. We show that the 2 exRNA signatures released by a single cell type can be separated by floatation on a density gradient. These results show that cells can release multiple types of exRNA with substantial differences in RNA species content. This is important for any future studies determining the nature and function of exRNA released from different cells under different conditions.
  •  
49.
  •  
50.
  • Mateescu, B., et al. (författare)
  • Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - An ISEV position paper
  • 2017
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, and industry, we currently have limited knowledge on which mechanisms drive and regulate RNA incorporation into EV and on how RNAencoded messages affect signalling processes in EV-targeted cells. Moreover, EV-RNA research faces various technical challenges, such as standardisation of EV isolationmethods, optimisation of methodologies to isolate and characteriseminute quantities of RNA found in EV, and development of approaches to demonstrate functional transfer of EV-RNA in vivo. These topics were discussed at the 2015 EV-RNA workshop of the International Society for Extracellular Vesicles. This position paper was written by the participants of the workshop not only to give an overview of the current state of knowledge in the field, but also to clarify that our incomplete knowledge - of the nature of EV(-RNA)s and of how to effectively and reliably study them - currently prohibits the implementation of gold standards in EV-RNA research. In addition, this paper creates awareness of possibilities and limitations of currently used strategies to investigate EV-RNA and calls for caution in interpretation of the obtained data. © 2017 The Author(s).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 65
Typ av publikation
tidskriftsartikel (57)
forskningsöversikt (5)
bokkapitel (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (59)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Lässer, Cecilia, 198 ... (65)
Lötvall, Jan, 1956 (45)
Jang, Su Chul, 1984 (12)
Cvjetkovic, Aleksand ... (9)
Park, Kyong-Su (9)
Olofsson Bagge, Roge ... (6)
visa fler...
Eldh, Maria, 1980 (6)
Rådinger, Madeleine, ... (6)
Lundbäck, Bo, 1948 (4)
Sjöstrand, Margareta ... (4)
Nilsson, Jonas A, 19 ... (4)
Bandeira, Elga (4)
Cheng, L (3)
Bally, Marta, 1981 (3)
Ekerljung, Linda, 19 ... (3)
Nwaru, Bright I, 197 ... (3)
Malmhäll, Carina, 19 ... (3)
Gribonika, Inta (3)
Rupert, Deborah, 198 ... (3)
Nieuwland, R. (3)
Hendrix, A. (3)
Cheng, Lesley (3)
Das, S. (2)
Hill, A. F. (2)
Wennergren, Göran, 1 ... (2)
Sihlbom, Carina, 197 ... (2)
Thorsell, Annika, 19 ... (2)
Zhdanov, Vladimir, 1 ... (2)
Höök, Fredrik, 1966 (2)
Zheng, L (2)
Gardiner, C (2)
Valadi, Hadi, 1963 (2)
Gustafson, D (2)
Claudio, Virginia, 1 ... (2)
Johansson, Junko, 19 ... (2)
Block, Stephan, 1978 (2)
Marcilla, Antonio (2)
Zhang, Guo-Qiang (2)
Clayton, A. (2)
Yin, Y. (2)
O'Driscoll, L. (2)
Théry, C. (2)
Gardiner, Chris (2)
Boilard, E. (2)
Buzas, E. I. (2)
Gualerzi, A. (2)
Lenassi, M. (2)
Nazarenko, I. (2)
Soekmadji, C. (2)
Clayton, Aled (2)
visa färre...
Lärosäte
Göteborgs universitet (65)
Karolinska Institutet (4)
Chalmers tekniska högskola (3)
Kungliga Tekniska Högskolan (2)
Lunds universitet (2)
Umeå universitet (1)
visa fler...
Linköpings universitet (1)
visa färre...
Språk
Engelska (64)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (53)
Naturvetenskap (21)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy