SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Löndahl Jakob) "

Sökning: WFRF:(Löndahl Jakob)

  • Resultat 1-50 av 273
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aaltonen, H. Laura, et al. (författare)
  • Airspace dimension assessment with nanoparticles as a proposed biomarker for emphysema
  • 2021
  • Ingår i: Thorax. - : BMJ. - 0040-6376 .- 1468-3296. ; 76:10, s. 1040-1043
  • Tidskriftsartikel (refereegranskat)abstract
    • Airspace dimension assessment with nanoparticles (AiDA) is a novel method to measure distal airspace radius non-invasively. In this study, AiDA radii were measured in 618 individuals from the population-based Swedish CArdiopulmonary BioImaging Study, SCAPIS. Subjects with emphysema detected by computed tomography were compared to non-emphysematous subjects. The 47 individuals with mainly mild-to-moderate visually detected emphysema had significantly larger AiDA radii, compared with non-emphysematous subjects (326±48 μm vs 291±36 μm); OR for emphysema per 10 μm: 1.22 (1.13-1.30, p<0.0001). Emphysema according to CT densitometry was similarly associated with larger radii compared with non-emphysematous CT examinations (316±41 μm vs 291 μm±26 μm); OR per 10 μm: 1.16 (1.08-1.24, p<0.0001). The results are in line with comparable studies. The results show that AiDA is a potential biomarker for emphysema in individuals in the general population.
  •  
3.
  •  
4.
  •  
5.
  • Ahlberg, Erik, et al. (författare)
  • "Vi klimatforskare stödjer Greta och skolungdomarna"
  • 2019
  • Ingår i: Dagens nyheter (DN debatt). - 1101-2447.
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • DN DEBATT 15/3. Sedan industrialiseringens början har vi använt omkring fyra femtedelar av den mängd fossilt kol som får förbrännas för att vi ska klara Parisavtalet. Vi har bara en femtedel kvar och det är bråttom att kraftigt reducera utsläppen. Det har Greta Thunberg och de strejkande ungdomarna förstått. Därför stödjer vi deras krav, skriver 270 klimatforskare.
  •  
6.
  • Alsved, Malin, et al. (författare)
  • Aerosolization and recovery of viable murine norovirus in an experimental setup
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Noroviruses are the major cause for viral acute gastroenteritis in the world. Despite the existing infection prevention strategies in hospitals, the disease continues to spread and causes extensive and numerous outbreaks. Hence, there is a need to investigate the possibility of airborne transmission of norovirus. In this study, we developed an experimental setup for studies on the infectivity of aerosolized murine norovirus (MNV), a model for the human norovirus. Two aerosol generation principles were evaluated: bubble bursting, a common natural aerosolization mechanism, and nebulization, a common aerosolization technique in laboratory studies. The aerosolization setup was characterized by physical and viral dilution factors, generated aerosol particle size distributions, and the viral infectivity after aerosolization. We found a lower physical dilution factor when using the nebulization generator than with the bubble bursting generator. The viral dilution factor of the system was higher than the physical dilution; however, when comparing the physical and viral dilution factors, bubble bursting generation was more efficient. The infectivity per virus was similar using either generation principle, suggesting that the generation itself had a minor impact on MNV infectivity and that instead, the effect of drying in air could be a major reason for infectivity losses.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Alsved, Malin, et al. (författare)
  • Airborne bacteria in hospital operating rooms during ongoing surgery
  • 2018
  • Konferensbidrag (refereegranskat)abstract
    • IntroductionPost-operative infections obtained from open-wound surgeries constitute an unnecessary load on both healthcare and affected patients. It is well established that increased air cleanliness reduces the number of post-operative infections. Therefore, the ventilation system is important in order to reduce the number of infectious particles in the air during surgery. Ventilation with high airflow, as in operating rooms, consumes a high amount of energy and it is thus desirable to find energy efficient solutions. ObjectivesThe purpose of this work was to evaluate air quality, energy efficiency and working environment comfort for three different ventilation techniques in operating rooms. MethodThe newly developed ventilation system temperature controlled airflow (TcAF) was compared with the conventionally used turbulent mixed airflow (TMA) and laminar airflow (LAF). In total, 750 air sample measurements were performed during 45 orthopaedic operations: 15 for each type of ventilation system [1]. The concentration of colony forming units (CFU)/m3 was measured at three locations in the rooms: close to the wound (<0.5 m), at the instrument table and peripherally in the room. The working environment comfort was evaluated in a questionnaire.ResultsOur study shows that both LAF and TcAF maintains CFU concentrations in the air during ongoing surgery significantly below 10 CFU/m3 at the wound and at the instrument table, and for TcAF also in the periphery of the room, see Figure 1. The median CFU concentration in TMA was at or above 10 CFU/m3 at all locations. TcAF used less than half the airflow to that of LAF, resulting in a 28% reduction in energy consumption. The working environment comfort was perceived less noisy and having less draft in the TcAF than the LAF ventilation.SummaryBoth the LAF and TcAF ventilation maintain high air cleanliness with low CFU concentrations throughout the operation. TMA is less efficient in removing bacteria from the air close to the patient.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  • Alsved, Malin, et al. (författare)
  • Droplet, aerosol and SARS-CoV-2 emissions during singing and talking
  • 2021
  • Konferensbidrag (refereegranskat)abstract
    • IntroductionAs the pandemic continues to spread, more knowledge is needed about the viral transmission routes. Several super spreading events during the Covid-19 pandemic have been linked to singing in choirs and talking loud. However, in the beginning of the pandemic there was only one study about emitted aerosols and droplets from singing, published in 1968, and only a handful on emissions from talking. Therefore, we conducted a study to measure the aerosol and droplet emissions from talking and singing. We also evaluated the emissions from singing when wearing a face mask.We have further developed our setup so that we collect the aerosol particles from Covid-19 infected patients that are talking and singing, and analyze our samples for SARS-CoV-2, the virus causing Covid-19.MethodTwelve healthy singers (7 professionals, 5 amateurs) were included in the first study part on quantifying the amount of emitted aerosols and droplets. The singers were singing or talking a short consonant rich text repeatedly at a constant pitch with their face in the opening of a funnel. The aerosol particle size and concentration was measured from the other end of the funnel using an aerodynamic particle sizer (APS, 3321, TSI Inc). In addition, the amount of un-evaporated droplets were captured with a high-speed camera and quantified using image analysis.During February and March 2021 we will collect aerosol particles from patients with confirmed Covid-19 that are singing and talking into a funnel. We will use a growth tube condensation collector, a BioSpot (Aerosol Devices), operating at 8 L min-1, and a NIOSH BC-251 cyclone sampler operating at 3.5 L min-1 (TISCH Environmental). The BioSpot collects the whole range of exhaled aerosol particles with high (95%) efficiency into liquid, and the NIOSH cyclone sampler collects particles into three size fractions: <1 µm (filter), 1-4 µm (liquid), >4 µm (liquid). The APS is again used to measure size and concentration of the emitted aerosol particles, so that emissions from infected test subjects can be compared with those of the healthy test subjects. Air samples will be analyzed for detection of SARS-CoV-2 genes, and if possible, SARS-CoV-2 infectivity in cell cultures.ResultsAerosol particle emissions from healthy test subjects were significantly higher during normal singing (median 690, range [320–2870] particles/s) than during normal talking (270 [120–1380] particles/s) (Wilcoxon’s signed rank test, p=0.002). Loud singing produced even more aerosol particles (980 [390–2870] particles/s) than normal singing (p=0.002). The amount of non-evaporated droplets detected by the high-speed camera setup showed similar results: more droplets during loud singing or talking. For both aerosol particle concentrations and droplet numbers, the levels were reduced by on average 70-80% when wearing a surgical face mask.ConclusionsSinging and talking give rise to high aerosol and droplet emissions from the respiratory tract. This is likely an important transmission route for Covid-19. In our upcoming part of the study we hope to determine how much SARS-CoV-2 that is emitted during these social activities.
  •  
16.
  • Alsved, Malin, et al. (författare)
  • Effect of Aerosolization and Drying on the Viability of Pseudomonas syringae Cells
  • 2018
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Airborne dispersal of microorganisms influences their biogeography, gene flow, atmospheric processes, human health and transmission of pathogens that affect humans, plants and animals. The extent of their impact depends essentially on cell-survival rates during the process of aerosolization. A central factor for cell-survival is water availability prior to and upon aerosolization. Also, the ability of cells to successfully cope with stress induced by drying determines their chances of survival. In this study, we used the ice-nucleation active, plant pathogenic Pseudomonas syringae strain R10.79 as a model organism to investigate the effect of drying on cell survival. Two forms of drying were simulated: drying of cells in small droplets aerosolized from a wet environment by bubble bursting and drying of cells in large droplets deposited on a surface. For drying of cells both in aerosol and surface droplets, the relative humidity (RH) was varied in the range between 10 and 90%. The fraction of surviving cells was determined by live/dead staining followed by flow cytometry. We also evaluated the effect of salt concentration in the water droplets on the survival of drying cells by varying the ionic strength between 0 and 700 mM using NaCl and sea salt. For both aerosol and surface drying, cell survival increased with decreasing RH (p < 0.01), and for surface drying, survival was correlated with increasing salt concentration (p < 0.001). Imaging cells with TEM showed shrunk cytoplasm and cell wall damage for a large fraction of aerosolized cells. Ultimately, we observed a 10-fold higher fraction of surviving cells when dried as aerosol compared to when dried on a surface. We conclude that the conditions, under which cells dry, significantly affect their survival and thus their success to spread through the atmosphere and colonize new environments as well as their ability to affect atmospheric processes.
  •  
17.
  •  
18.
  • Alsved, Malin, et al. (författare)
  • Exhaled respiratory particles during singing and talking
  • 2020
  • Ingår i: Aerosol Science and Technology. - : Informa UK Limited. - 1521-7388 .- 0278-6826. ; 54:11, s. 245-1248
  • Tidskriftsartikel (refereegranskat)abstract
    • Choir singing has been suspended in many countriesduring the Covid-19 pandemic due to incidental reportsof disease transmission. The mode of transmission has been attributed to exhaled droplets, but with the exception of a study on tuberculosis from1968, there is presently almost no scientific evidence ofincreased particle emissions from singing. A substantial number of studies have,however, investigated aerosols emitted from breathing,talking, coughing and sneezing. It has also been shown that justnormal breathing over time can generate more viablevirus aerosol than coughing, since the latter is a less fre-quent activity.Compared to talking, singing often involves continu-ous voicing, higher sound pressure, higher frequencies,deeper breaths, higher peak airflows and more articu-lated consonants. All these factors are likely to increaseexhaled emissions.The aim of this study was to investigate aerosol anddroplet emissions during singing, as compared to talking and breathing. We also examined the presence of SARS-CoV-2 in the air from breathing, talking and singing,and the efficacy of face masks to reduce emissions. In this study we defined aerosol particles as having a drysize in the range 0.5–10mm. Although debatable from anaerosol physics point of view, a cutoff diameter between5 and 10mm is normally used in medicine for classifica-tion of aerosol versus droplet route of transmission. Droplets are here defined as exhaled particles, frommicron size with no upper size limit, and measured dir-ectly at the mouth before complete evaporation, thuspartly in liquid phase.
  •  
19.
  • Alsved, Malin, et al. (författare)
  • Experimental and computational evaluation of airborne bacteria in hospital operating rooms with high airflows
  • 2018
  • Ingår i: Proceedings of The 5<sup>th</sup> Working &amp; Indoor Aerosols Conference 18-20 April 2018; Cassino, Italy.
  • Konferensbidrag (refereegranskat)abstract
    • Post-operative infections after surgery can be decreased by the use of efficient ventilation with clean air. In this study, we investigated three types of operating room ventilation: turbulent mixed airflow(TMA), laminar airflow (LAF) and a new type of ventilation named temperature controlled airflow(TcAF). Measurements of airborne bacteria were made during surgery and compared with values calculated by computational fluid dynamics (CFD). The results show that LAF and TcAF are most efficient in removing bacteria around the patient. With LAF, there are large differences in bacterial loads, depending on location in the room.
  •  
20.
  •  
21.
  •  
22.
  •  
23.
  •  
24.
  •  
25.
  • Alsved, Malin, et al. (författare)
  • Infectivity of exhaled SARS-CoV-2 aerosols is sufficient to transmit covid-19 within minutes
  • 2023
  • Ingår i: Scientific Reports. - 2045-2322. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Exhaled SARS-CoV-2-containing aerosols contributed significantly to the rapid and vast spread of covid-19. However, quantitative experimental data on the infectivity of such aerosols is missing. Here, we quantified emission rates of infectious viruses in exhaled aerosol from individuals within their first days after symptom onset from covid-19. Six aerosol samples from three individuals were culturable, of which five were successfully quantified using TCID50. The source strength of the three individuals was highest during singing, when they exhaled 4, 36, or 127 TCID50/s, respectively. Calculations with an indoor air transmission model showed that if an infected individual with this emission rate entered a room, a susceptible person would inhale an infectious dose within 6 to 37 min in a room with normal ventilation. Thus, our data show that exhaled aerosols from a single person can transmit covid-19 to others within minutes at normal indoor conditions.
  •  
26.
  •  
27.
  • Alsved, Malin, et al. (författare)
  • Natural sources and experimental generation of bioaerosols : Challenges and perspectives
  • 2020
  • Ingår i: Aerosol Science and Technology. - : Informa UK Limited. - 0278-6826 .- 1521-7388. ; 54:5, s. 547-571
  • Forskningsöversikt (refereegranskat)abstract
    • Experimental aerosol generation methods aim to represent natural processes; however, the complexity is not always captured and unforeseen variability may be introduced into the data. The current practices for natural and experimental aerosol generation techniques are reviewed here. Recommendations for best practice are presented, and include characterization of starting material and spray fluid, rational selection of appropriate aerosol generators, and physical and biological characterization of the output aerosol. Reporting of bioaerosol research should capture sufficient detail to aid data interpretation, reduce variation, and facilitate comparison between research laboratories. Finally, future directions and challenges in bioaerosol generation are discussed.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  • Alsved, Malin, et al. (författare)
  • SARS-CoV-2 in aerosol particles exhaled from COVID-19 infected patients during breathing, talking and singing
  • 2021
  • Konferensbidrag (refereegranskat)abstract
    • In the beginning of the COVID-19 pandemic, several super spreader events occurred during singing in choirs, which lead to an increased attention to airborne transmission of SARS-CoV-2, the virus causing COVID-19. Since then, aerosol generation from singing has been studied in more detail, however, only from healthy subjects. In this study, we collected aerosol particles in the exhaled breath of 40 COVID-19 infected patients during breathing, talking and singing, respectively, and analysed the samples for detection of SARS-CoV-2.MethodPatients that were contacted by the COVID-19 testing service due to a positive test result were asked to volunteer for the study. A team of researchers drove a small truck hosting a mobile laboratory to the home address of the patient to perform exhaled breath aerosol collection using a condensational particle collector (BioSpot, Aerosol Devices) and a two-stage cyclone sampler (NIOSH bc-251, Tisch Environmental). Samples were collected for 10 min each when the patient was breathing, talking and singing, respectively.All samples were stored at -80°C until RNA extraction and analysis by reverse transcription quantitative polymerase chain reaction (RT-qPCR) targeting the N-gene.ResultsA first screening of air samples collected with the BioSpot showed that SARS-CoV-2 could be detected in the exhaled aerosols from three of nine patients during singing or talking. Two of these samples contained 103 and 104 viral RNA copies, corresponding to a viral emission rate of approximately 4 and 25 viruses per second, respectively. Samples from the remaining 31 patients are to be analysed during the spring. We hope to contribute to quantifying and understanding the Covid-19 transmission via the airborne route.This study was approved by the Swedish Ethics Review Authority (2020-07103). This work was supported by AFA Insurances and the Swedish Research Council FORMAS.
  •  
32.
  • Alsved, Malin, et al. (författare)
  • SARS-CoV-2 in aerosol particles exhaled from COVID-19 infected patients during breathing, talking and singing
  • 2021
  • Konferensbidrag (refereegranskat)abstract
    • In the beginning of the COVID-19 pandemic, several super spreader events occurred during choir singing, which lead to an increased attention to airborne transmission of SARS-CoV-2. Since then, aerosol generation from singing has been studied in detail, however, mainly from healthy subjects. In this study, we collected aerosol particles in the exhaled breath of 38 COVID-19 infected patients during breathing, talking and singing, respectively, and analyzed the samples for detection of SARS-CoV-2.MethodPatients that were contacted by the COVID-19 testing service due to a positive test result early in the phase of their infection (median 2, range: 0-6 days from symptom onset) were asked to volunteer for the study. A team of researchers drove a small truck hosting a mobile laboratory to the home address of the patient to perform exhaled breath aerosol collection using a condensational particle collector (BioSpot, Aerosol Devices) and a two-stage cyclone sampler (NIOSH bc-251, Tisch Environmental). Samples were collected for 10 min each when the patients were breathing, talking and singing, respectively. In addition, patient samples from nasopharynx and saliva were collected, and patients filled out a questionnaire about symptoms. All samples were stored at -80 °C until RNA extraction and analysis by reverse transcription quantitative polymerase chain reaction (RT-qPCR) targeting the N-gene.ResultsA first preliminary screening of air samples collected with the BioSpot showed that SARS-CoV-2 could be detected in the exhaled aerosols from 14 of 38 (37%) patients during respiratory activities. 50% of patients in the early phase of the infection, day 0-1 from symptom onset, emitted detectable levels of airborne SARS-CoV-2 RNA, 35% of patients on day 2-3, and 0% of patients on day 4-6. The highest viral RNA concentrations in aerosol samples were found in those collected during singing. Further analysis is ongoing and we hope that our results will contribute to quantifying and understanding the Covid-19 transmission via the airborne route.This study was approved by the Swedish Ethics Review Authority (2020-07103). This work was supported by AFA Insurances and the Swedish Research Council FORMAS.
  •  
33.
  • Alsved, Malin, et al. (författare)
  • SARS-CoV-2 in exhaled aerosol particles from covid-19 cases and its association to household transmission
  • 2022
  • Ingår i: Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. - : Oxford University Press (OUP). - 1537-6591. ; 75:1, s. 50-56
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Covid-19 transmission via exhaled aerosol particles has been considered an important route for the spread of infection, especially during super-spreading events involving loud talking or singing. However, no study has previously linked measurements of viral aerosol emissions to transmission rates.METHODS: During Feb-Mar 2021, covid-19 cases that were close to symptom onset were visited with a mobile laboratory for collection of exhaled aerosol particles during breathing, talking and singing, respectively, and of nasopharyngeal and saliva samples. Aerosol samples were collected using a BioSpot-VIVAS and a NIOSH bc-251 two-stage cyclone, and all samples were analyzed by RT-qPCR for SARS-CoV-2 RNA detection. We compared transmission rates between households with aerosol-positive and aerosol-negative index cases.RESULTS: SARS-CoV-2 RNA was detected in at least one aerosol sample from 19 of 38 (50%) included cases. The odds ratio of finding positive aerosol samples decreased with each day from symptom onset (OR 0.55, 95CI 0.30-1.0, p=0.049). The highest number of positive aerosol samples were from singing, 16 (42%), followed by talking, 11 (30%), and the least from breathing, 3 (8%). Index cases were identified for 13 households with 31 exposed contacts. Higher transmission rates were observed in households with aerosol-positive index cases, 10/16 infected (63%), compared to households with aerosol-negative index cases, 4/15 infected (27%) (Chi-square test, p=0.045).CONCLUSIONS: Covid-19 cases were more likely to exhale SARS-CoV-2-containing aerosol particles close to symptom onset and during singing or talking as compared to breathing. This study supports that individuals with SARS-CoV-2 in exhaled aerosols are more likely to transmit covid-19.
  •  
34.
  • Alsved, Malin, et al. (författare)
  • Size distribution of exhaled aerosol particles containing SARS-CoV-2 RNA
  • 2023
  • Ingår i: Infectious Diseases. - : Informa UK Limited. - 2374-4235 .- 2374-4243. ; 55:2, s. 158-163
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: SARS-CoV-2 in exhaled aerosols is considered an important contributor to the spread of COVID-19. However, characterizing the size distribution of virus-containing aerosol particles has been challenging as high concentrations of SARS-CoV-2 in exhaled air is mainly present close to symptom onset. We present a case study of a person with COVID-19 who was able to participate in extensive measurements of exhaled aerosols already on the day of symptom onset and then for the following three days. Methods: Aerosol collection was performed using an eight-stage impactor while the subject was breathing, talking and singing, for 30 min each, once every day. In addition, nasopharyngeal samples, saliva samples, room air samples and information on symptom manifestations were collected every day. Samples were analyzed by RT-qPCR for detection of SARS-CoV-2 RNA. Results: SARS-CoV-2 RNA was detected in seven of the eight particle size fractions, from 0.34 to >8.1 µm, with the highest concentrations found in 0.94–2.8 µm particles. The concentration of SARS-CoV-2 RNA was highest on the day of symptom onset, and declined for each day thereafter. Conclusion: Our data showed that 90% of the exhaled SARS-CoV-2 RNA was found in aerosol particles <4.5 µm, indicating the importance of small particles for the transmission of COVID-19 close to symptom onset. These results are important for our understanding of airborne transmission, for developing accurate models and for selecting appropriate mitigation strategies.
  •  
35.
  • Alsved, Malin, et al. (författare)
  • Sources of Airborne Norovirus in Hospital Outbreaks
  • 2020
  • Ingår i: Clinical Infectious Diseases. - : Oxford University Press (OUP). - 1537-6591 .- 1058-4838. ; 70:10, s. 2023-2028
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Noroviruses are the major cause of viral gastroenteritis. Disease transmission is difficult to prevent and outbreaks in healthcare facilities commonly occur. Contact with infected persons and contaminated environments are believed to be the main routes of transmission. However, noroviruses have recently been found in aerosols and airborne transmission has been suggested. The aim of our study was to investigate associations between symptoms of gastroenteritis and presence of airborne norovirus, and to investigate the size of norovirus carrying particles.METHODS: Air sampling was repeatedly performed close to 26 patients with norovirus infections. Samples were analysed for norovirus RNA by RT-qPCR. The times since the patients' last episodes of vomiting and diarrhoea were recorded. Size separating aerosol particle collection was also performed in ward corridors.RESULTS: Norovirus RNA was found in 21 (24%) of 86 air samples from 10 different patients. Only air samples during outbreaks, or before a succeeding outbreak, tested positive for norovirus RNA. Airborne norovirus RNA was also strongly associated with a shorter time period since the last vomiting episode (odds ratio 8.1, p=0.04 within 3 hours since the last vomiting episode). The concentration of airborne norovirus ranged from 5-215 copies/m3, and detectable amounts of norovirus RNA were found in particles <0.95 µm and >4.51 µm.CONCLUSIONS: The results suggest that recent vomiting is the major source of airborne norovirus and imply a connection between airborne norovirus and outbreaks. The presence of norovirus RNA in submicrometre particles indicates that airborne transmission can be an important transmission route.
  •  
36.
  •  
37.
  • Andersen, Christina, et al. (författare)
  • Inhalation and dermal uptake of particle and gas phase phthalates - A human chamber exposure study
  • 2018
  • Ingår i: 15th Conference of the International Society of Indoor Air Quality and Climate, INDOOR AIR 2018. - 9781713826514
  • Konferensbidrag (refereegranskat)abstract
    • We have exposed sixteen test subjects to particle and gas phase phthalates in the controlled chamber exposure study. Deuterium labelled phthalates were used to generate particle D4-DEHP (di(2-ethylhexyl) phthalate) and gas phase D4-DEP (diethyl phthalate) for exposures scenarios allowed studying the dermal only and combined inhalational and dermal uptake. Metabolites were measured in urine samples before and after three hours of exposure. The inhalation was the dominant route of uptake for both DEHP and DEP in this study design and exposure settings. Larger uptake of DEP compared to DEHP both via inhalation and dermal uptake was observed. Dermal uptake of DEHP was not observed in this study. Inhalational urinary excretion factors of the metabolites were found to be 0.73 for DEHP and 0.53 for DEP. This study also highlights the importance of taking into consideration the deposited dose of inhaled particles in studies of uptake of particles.
  •  
38.
  • Andersen, Christina, et al. (författare)
  • Inhalation and Dermal Uptake of Particle and Gas-phase Phthalates - A Human Exposure Study
  • 2018
  • Ingår i: Environmental Science & Technology. - : American Chemical Society (ACS). - 1520-5851 .- 0013-936X. ; 52:21, s. 12792-12800
  • Tidskriftsartikel (refereegranskat)abstract
    • Phthalates are ubiquitous in indoor environments, which raises concern about their endocrine disrupting properties. However, studies of human uptake from airborne exposure are limited. We studied the inhalation uptake and dermal uptake by air-to-skin transfer with clean clothing as a barrier of two deuterium-labelled airborne phthalates: particle-phase D4-DEHP (di-(2-ethylhexyl)phthalate) and gas-phase D4-DEP (diethyl phthalate). Sixteen participants, wearing trousers and long-sleeved shirts, were under controlled conditions exposed to airborne phthalates in four exposure scenarios: dermal uptake alone, and combined inhalation+dermal uptake of both phthalates. The results showed an average uptake of D4-DEHP by inhalation of 0.0014±0.00088 (µg kg-1 bw)/(µg m-3)/h. No dermal uptake of D4-DEHP was observed during the 3 hour exposure with clean clothing. The deposited dose of D4-DEHP accounted for 26% of the total inhaled D4-DEHP mass. For D4-DEP, the average uptake by inhalation+dermal was 0.0067±0.0045 and 0.00073±0.00051 (µg kg-1 bw)/(µg m-3)/h for dermal uptake. Urinary excretion factors of metabolites after inhalation were estimated to 0.69 for D4-DEHP and 0.50 for D4-DEP. Under the described settings, the main uptake of both phthalates was through inhalation. The results demonstrate the differences in uptake of gas and particles, and highlights the importance of considering the deposited dose in particle uptake studies.
  •  
39.
  • Anund Vogel, Jonas, et al. (författare)
  • Buildings post corona
  • 2023
  • Ingår i: The REHVA European HVAC Journal. - 1307-3729. ; 59:2, s. 19-21
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • Buildings Post Corona is a Swedish collaborative research project between Chalmers, KTH Royal Institute of Technology, Lund, and Umeå Universities. The project supports the building sector in designing and maintaining sustainable buildings with a healthy and good indoor environment. The COVID-19 crisis has stressed the importance and urge of this research.The scope of the project is to develop a methodology for the operation and design of buildings with an indoor environment that meets future health and climate challenges. The project’s overall goal is to establish an interdisciplinary platform to document existing experiences and knowledge and to gain new knowledge required for good building design and operation.
  •  
40.
  • Anund Vogel, Jonas, et al. (författare)
  • Enbart avstånd och handhygien räcker inte
  • 2023
  • Ingår i: Fastighetstidningen. - 0348-5552.
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • I denna debattartikel lyfter sex forskare frågan att myndigheter och branschorganisationer delvis gav olika råd kring åtgärder för att begränsa risken för smittspridning inomhus. För att klara nästa pandemi krävs bättre samordning av riktlinjer kring ventilation och luftkvalitet.
  •  
41.
  • Barath, Stefan, et al. (författare)
  • Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions
  • 2010
  • Ingår i: Particle and Fibre Toxicology. - : BioMed Central. - 1743-8977. ; 7:1, s. 19-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions.OBJECTIVES: To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures.METHODS: In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 mug/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions.MEASUREMENTS AND MAIN RESULTS: Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05).CONCLUSION: Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel exhaust properties, whereas the novel calcium flux-related effect may be associated with exhaust properties more specific for the ETC condition, for example a higher content of diesel soot particles along with their adsorbed organic compounds.
  •  
42.
  •  
43.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  • Caplat, Paul, et al. (författare)
  • Looking beyond the mountain: dispersal barriers in a changing world
  • 2016
  • Ingår i: Frontiers in Ecology and the Environment. - : Wiley. - 1540-9295 .- 1540-9309. ; 14:5, s. 262-269
  • Tidskriftsartikel (refereegranskat)abstract
    • Dispersal barriers have demographic, evolutionary, and ecosystem-wide consequences. With ongoing changes in the environment, some dispersal barriers will likely disappear while new ones will appear, and it is crucial to understand these dynamics to forecast species' distributions and adaptive potential. Here we review recent literature on the ecological and evolutionary aspects of dispersal to highlight key dynamics of dispersal barriers in the face of global change. After defining dispersal barriers, we explain that a better understanding of their dynamics requires identifying the barrier types that are most susceptible to change and predicting species' responses. This knowledge is a prerequisite for designing management strategies to increase or reduce connectivity, and maintain adaptive potential. Our intent is to motivate researchers to explicitly consider dispersal barriers in order to better forecast the dynamics of species and ecosystems subject to global change.
  •  
48.
  • Cediel Ulloa, Andrea, et al. (författare)
  • Toxicity of stainless and mild steel particles generated from gas-metal arc welding in primary human small airway epithelial cells
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Welding fumes induce lung toxicity and are carcinogenic to humans but the molecular mechanisms have yet to be clarified. The aim of this study was to evaluate the toxicity of stainless and mild steel particles generated via gas-metal arc welding using primary human small airway epithelial cells (hSAEC) and ToxTracker reporter murine stem cells, which track activation of six cancer-related pathways. Metal content (Fe, Mn, Ni, Cr) of the particles was relatively homogenous across particle size. The particles were not cytotoxic in reporter stem cells but stainless steel particles activated the Nrf2-dependent oxidative stress pathway. In hSAEC, both particle types induced time- and dose-dependent cytotoxicity, and stainless steel particles also increased generation of reactive oxygen species. The cellular metal content was higher for hSAEC compared to the reporter stem cells exposed to the same nominal dose. This was, in part, related to differences in particle agglomeration/sedimentation in the different cell media. Overall, our study showed differences in cytotoxicity and activation of cancer-related pathways between stainless and mild steel welding particles. Moreover, our data emphasizes the need for careful assessment of the cellular dose when comparing studies using different in vitro models.
  •  
49.
  • Dierschke, Katrin, et al. (författare)
  • Acute respiratory effects and biomarkers of inflammation due to welding-derived nanoparticle aggregates
  • 2017
  • Ingår i: International Archives of Occupational and Environmental Health. - : Springer Science and Business Media LLC. - 0340-0131 .- 1432-1246. ; 90:5, s. 451-463
  • Tidskriftsartikel (refereegranskat)abstract
    • Welders are exposed to airborne particles from the welding environment and often develop symptoms work-related from the airways. A large fraction of the particles from welding are in the nano-size range. In this study we investigate if the welders' airways are affected by exposure to particles derived from gas metal arc welding in mild steel in levels corresponding to a normal welding day. In an exposure chamber, 11 welders with and 10 welders without work-related symptoms from the lower airways and 11 non-welders without symptoms, were exposed to welding fumes (1 mg/m(3)) and to filtered air, respectively, in a double-blind manner. Symptoms from eyes and upper and lower airways and lung function were registered. Blood and nasal lavage (NL) were sampled before, immediately after and the morning after exposure for analysis of markers of oxidative stress. Exhaled breath condensate (EBC) for analysis of leukotriene B4 (LT-B4) was sampled before, during and immediately after exposure. No adverse effects of welding exposure were found regarding symptoms and lung function. However, EBC LT-B4 decreased significantly in all participants after welding exposure compared to filtered air. NL IL-6 increased immediately after exposure in the two non-symptomatic groups and blood neutrophils tended to increase in the symptomatic welder group. The morning after, neutrophils and serum IL-8 had decreased in all three groups after welding exposure. Remarkably, the symptomatic welder group had a tenfold higher level of EBC LT-B4 compared to the two groups without symptoms. Despite no clinical adverse effects at welding, changes in inflammatory markers may indicate subclinical effects even at exposure below the present Swedish threshold limit (8 h TWA respirable dust).
  •  
50.
  • Ekberg, Lars, 1962, et al. (författare)
  • Buildings Post Corona
  • 2022
  • Ingår i: The REHVA European HVAC Journal. - 1307-3729. ; 59:2, s. 19-21
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Buildings Post Corona is a Swedish collaborative research project between Chalmers, KTH Royal Institute of Technology, Lund, and Umeå Universities. The project supports the building sector in designing and maintaining sustainable buildings with a healthy and good indoor environment. The COVID-19 crisis has stressed the importance and urge of this research, which is financially supported by FORMAS (a governmental research council for sustainable development https://formas.se)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 273
Typ av publikation
konferensbidrag (129)
tidskriftsartikel (92)
annan publikation (41)
bokkapitel (4)
forskningsöversikt (3)
rapport (1)
visa fler...
doktorsavhandling (1)
licentiatavhandling (1)
patent (1)
visa färre...
Typ av innehåll
refereegranskat (194)
populärvet., debatt m.m. (59)
övrigt vetenskapligt/konstnärligt (20)
Författare/redaktör
Löndahl, Jakob (273)
Swietlicki, Erik (81)
Pagels, Joakim (64)
Alsved, Malin (54)
Bohgard, Mats (50)
Medstrand, Patrik (39)
visa fler...
Rissler, Jenny (36)
Gudmundsson, Anders (34)
Fraenkel, Carl-Johan (34)
Wollmer, Per (32)
Massling, Andreas (32)
Wierzbicka, Aneta (32)
Thuresson, Sara (29)
Jakobsson, Jonas (28)
Boman, Christoffer (22)
Widell, Anders (21)
Blomberg, Anders (20)
Sandström, Thomas (19)
Isaxon, Christina (18)
Loft, Steffen (18)
Hussein, Tareq (15)
Nicklasson, Hanna (14)
Kristensson, Adam (14)
Santl-Temkiv, Tina (13)
Aaltonen, H. Laura (12)
Nielsen, Jörn (11)
Dahl, Andreas (10)
Roldin, Pontus (10)
Eriksson, Axel (9)
Svenningsson, Birgit ... (9)
Fors, Erik (9)
Nygren, David (8)
Svensson, Tobias (8)
Ramstorp, Matts (8)
Ketzel, Matthias (8)
Assarsson, Eva (8)
Sadrizadeh, Sasan (7)
Dierschke, Katrin (7)
Petersson Sjögren, M ... (6)
Civilis, Anette (6)
Ekolind, Peter (6)
Sasinovich, Sviatasl ... (6)
Diaz, Sandra (5)
Tammelin, Ann (5)
Erichsen Andersson, ... (5)
Larsson, P A (5)
Bengtsson, Agneta (5)
Sjögren, Staffan (5)
Boor, Brandon E. (5)
Koivisto, Antti Joon ... (5)
visa färre...
Lärosäte
Lunds universitet (269)
Karolinska Institutet (9)
Göteborgs universitet (8)
Umeå universitet (7)
RISE (7)
Kungliga Tekniska Högskolan (3)
visa fler...
Stockholms universitet (3)
Uppsala universitet (2)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (212)
Svenska (61)
Forskningsämne (UKÄ/SCB)
Teknik (125)
Naturvetenskap (102)
Medicin och hälsovetenskap (101)
Humaniora (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy