SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ladds M) "

Sökning: WFRF:(Ladds M)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ladds, MJGW, et al. (författare)
  • Publisher Correction: A DHODH inhibitor increases p53 synthesis and enhances tumor cell killing by p53 degradation blockage
  • 2018
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 2071-
  • Tidskriftsartikel (refereegranskat)abstract
    • The original PDF version of this Article listed the authors as “Marcus J.G.W. Ladds,” where it should have read “Marcus J. G. W. Ladds, Ingeborg M. M. van Leeuwen, Catherine J. Drummond et al.#”.Also in the PDF version, it was incorrectly stated that “Correspondence and requests for materials should be addressed to S. Lín.”, instead of the correct “Correspondence and requests for materials should be addressed to S. Laín.”This has been corrected in the PDF version of the Article. The HTML version was correct from the time of publication.
  •  
2.
  •  
3.
  •  
4.
  • Ladds, Marcus J. G. W., et al. (författare)
  • A DHODH inhibitor increases p53 synthesis and enhances tumor cell killing by p53 degradation blockage
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of non-genotoxic therapies that activate wild-type p53 in tumors is of great interest since the discovery of p53 as a tumor suppressor. Here we report the identification of over 100 small-molecules activating p53 in cells. We elucidate the mechanism of action of a chiral tetrahydroindazole (HZ00), and through target deconvolution, we deduce that its active enantiomer (R)-HZ00, inhibits dihydroorotate dehydrogenase (DHODH). The chiral specificity of HZ05, a more potent analog, is revealed by the crystal structure of the (R)-HZ05/DHODH complex. Twelve other DHODH inhibitor chemotypes are detailed among the p53 activators, which identifies DHODH as a frequent target for structurally diverse compounds. We observe that HZ compounds accumulate cancer cells in S-phase, increase p53 synthesis, and synergize with an inhibitor of p53 degradation to reduce tumor growth in vivo. We, therefore, propose a strategy to promote cancer cell killing by p53 instead of its reversible cell cycle arresting effect.
  •  
5.
  •  
6.
  • Ladds, Marcus J. G. W., et al. (författare)
  • Autophagic flux blockage by accumulation of weakly basic tenovins leads to elimination of B-Raf mutant tumour cells that survive vemurafenib
  • 2018
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Tenovin-6 is the most studied member of a family of small molecules with antitumour activity in vivo. Previously, it has been determined that part of the effects of tenovin-6 associate with its ability to inhibit SirT1 and activate p53. However, tenovin-6 has also been shown to modulate autophagic flux. Here we show that blockage of autophagic flux occurs in a variety of cell lines in response to certain tenovins, that autophagy blockage occurs regardless of the effect of tenovins on SirT1 or p53, and that this blockage is dependent on the aliphatic tertiary amine side chain of these molecules. Additionally, we evaluate the contribution of this tertiary amine to the elimination of proliferating melanoma cells in culture. We also demonstrate that the presence of the tertiary amine is sufficient to lead to death of tumour cells arrested in G1 phase following vemurafenib treatment. We conclude that blockage of autophagic flux by tenovins is necessary to eliminate melanoma cells that survive B-Raf inhibition and achieve total tumour cell kill and that autophagy blockage can be achieved at a lower concentration than by chloroquine. This observation is of great relevance as relapse and resistance are frequently observed in cancer patients treated with B-Raf inhibitors.
  •  
7.
  • Shigeto, Makoto, et al. (författare)
  • GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation
  • 2015
  • Ingår i: Journal of Clinical Investigation. - : American Society for Clinical Investigation. - 0021-9738 .- 1558-8238. ; 125:12, s. 4714-4728
  • Tidskriftsartikel (refereegranskat)abstract
    • Strategies aimed at mimicking or enhancing the action of the incretin hormone glucagon-like peptide 1 (GLP-1) therapeutically improve glucose-stimulated insulin secretion (GSIS); however, it is not clear whether GLP-1 directly drives insulin secretion in pancreatic islets. Here, we examined the mechanisms by which GLP-1 stimulates insulin secretion in mouse and human islets. We found that GLP-1 enhances GSIS at a half-maximal effective concentration of 0.4 pM. Moreover, we determined that GLP-1 activates PLC, which increases submembrane diacylglycerol and thereby activates PKC, resulting in membrane depolarization and increased action potential firing and subsequent stimulation of insulin secretion. The depolarizing effect of GLP-1 on electrical activity was mimicked by the PKC activator PMA, occurred without activation of PKA, and persisted in the presence of PKA inhibitors, the K-ATP channel blacker tolbutamide, and the L-type Ca2+ channel blacker isradipine; however, depolarization was abolished by lowering extracellular Na+. The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of NW-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca2+ from thapsigargin-sensitive Ca2+ stores. Concordantly, GLP-1 effects were negligible in Trpm4 or Trpm5 KO islets. These data provide important insight into the therapeutic action of GLP-1 and suggest that circulating levels of this hormone directly stimulate insulin secretion by beta cells.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Costeira-Paulo, Joana, et al. (författare)
  • Lipids Shape the Electron Acceptor-Binding Site of the Peripheral Membrane Protein Dihydroorotate Dehydrogenase
  • 2018
  • Ingår i: Cell Chemical Biology. - : Elsevier BV. - 2451-9456 .- 2451-9448. ; 25:3, s. 309-317
  • Tidskriftsartikel (refereegranskat)abstract
    • The interactions between proteins and biological membranes are important for drug development, but remain notoriously refractory to structural investigation. We combine non-denaturing mass spectrometry (MS) with molecular dynamics (MD) simulations to unravel the connections among co-factor, lipid, and inhibitor binding in the peripheral membrane protein dihydroorotate dehydrogenase (DHODH), a key anticancer target. Interrogation of intact DHODH complexes by MS reveals that phospholipids bind via their charged head groups at a limited number of sites, while binding of the inhibitor brequinar involves simultaneous association with detergent molecules. MD simulations show that lipids support flexible segments in the membrane-binding domain and position the inhibitor and electron acceptor-binding site away from the membrane surface, similar to the electron acceptor-binding site in respiratory chain complex I. By complementing MS with MD simulations, we demonstrate how a peripheral membrane protein uses lipids to modulate its structure in a similar manner as integral membrane proteins.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy