SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lage K.) "

Search: WFRF:(Lage K.)

  • Result 1-47 of 47
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Arking, D. E., et al. (author)
  • Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization
  • 2014
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 46:8, s. 826-836
  • Journal article (peer-reviewed)abstract
    • The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼ 8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD. © 2014 Nature America, Inc.
  •  
2.
  • de Rojas, I., et al. (author)
  • Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s).
  •  
3.
  •  
4.
  • Bellenguez, C, et al. (author)
  • New insights into the genetic etiology of Alzheimer's disease and related dementias
  • 2022
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 54:4, s. 412-436
  • Journal article (peer-reviewed)abstract
    • Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
  •  
5.
  •  
6.
  •  
7.
  • van der Lee, S. J., et al. (author)
  • A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity
  • 2019
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 138:2, s. 237-250
  • Journal article (peer-reviewed)abstract
    • The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer's disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLC gamma 2 pathway as drug-target.
  •  
8.
  • Brownstein, Catherine A., et al. (author)
  • An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge
  • 2014
  • In: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 15:3, s. R53-
  • Journal article (peer-reviewed)abstract
    • Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.
  •  
9.
  •  
10.
  •  
11.
  • Baum, Matthew L, et al. (author)
  • CSMD1 regulates brain complement activity and circuit development
  • In: Brain, Behavior, and Immunity. - 1090-2139.
  • Journal article (peer-reviewed)abstract
    • Complement proteins facilitate synaptic elimination during neurodevelopmental pruning, but neural complement regulation is not well understood. CUB and Sushi Multiple Domains 1 (CSMD1) can regulate complement activity in vitro, is expressed in the brain, and is associated with increased schizophrenia risk. Beyond this, little is known about CSMD1 including whether it regulates complement activity in the brain or otherwise plays a role in neurodevelopment. We used biochemical, immunohistochemical, and proteomic techniques to examine the regional, cellular, and subcellular distribution as well as protein interactions of CSMD1 in the brain. To evaluate whether CSMD1 is involved in complement-mediated synapse elimination, we examined Csmd1-knockout mice and CSMD1-knockout human stem cell-derived neurons. We interrogated synapse and circuit development of the mouse visual thalamus, a process that involves complement pathway activity. We also quantified complement deposition on synapses in mouse visual thalamus and on cultured human neurons. Finally, we assessed uptake of synaptosomes by cultured microglia. We found that CSMD1 is present at synapses and interacts with complement proteins in the brain. Mice lacking Csmd1 displayed increased levels of complement component C3, an increased colocalization of C3 with presynaptic terminals, fewer retinogeniculate synapses, and aberrant segregation of eye-specific retinal inputs to the visual thalamus during the critical period of complement-dependent refinement of this circuit. Loss of CSMD1 in vivo enhanced synaptosome engulfment by microglia in vitro, and this effect was dependent on activity of the microglial complement receptor, CR3. Finally, human stem cell-derived neurons lacking CSMD1 were more vulnerable to complement deposition. These data suggest that CSMD1 can function as a regulator of complement-mediated synapse elimination in the CNS during development.
  •  
12.
  • Ebersole, Charles R., et al. (author)
  • Many Labs 5: Testing Pre-Data-Collection Peer Review as an Intervention to Increase Replicability
  • 2020
  • In: Advances in Methods and Practices in Psychological Science. - : Sage. - 2515-2467 .- 2515-2459. ; 3:3, s. 309-331
  • Journal article (peer-reviewed)abstract
    • Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3-9; median total sample = 1,279.5, range = 276-3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (Delta r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00-.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19-.50).
  •  
13.
  • Kivipelto, Miia, et al. (author)
  • World-Wide FINGERS Network : A global approach to risk reduction and prevention of dementia
  • 2020
  • In: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 16:7, s. 1078-1094
  • Journal article (peer-reviewed)abstract
    • Reducing the risk of dementia can halt the worldwide increase of affected people. The multifactorial and heterogeneous nature of late-onset dementia, including Alzheimer's disease (AD), indicates a potential impact of multidomain lifestyle interventions on risk reduction. The positive results of the landmark multidomain Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) support such an approach. The World-Wide FINGERS (WW-FINGERS), launched in 2017 and including over 25 countries, is the first global network of multidomain lifestyle intervention trials for dementia risk reduction and prevention. WW-FINGERS aims to adapt, test, and optimize the FINGER model to reduce risk across the spectrum of cognitive decline-from at-risk asymptomatic states to early symptomatic stages-in different geographical, cultural, and economic settings. WW-FINGERS aims to harmonize and adapt multidomain interventions across various countries and settings, to facilitate data sharing and analysis across studies, and to promote international joint initiatives to identify globally implementable and effective preventive strategies.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Abolfathi, Bela, et al. (author)
  • The LSST DESC DC2 Simulated Sky Survey
  • 2021
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 253:31
  • Journal article (peer-reviewed)abstract
    • We describe the simulated sky survey underlying the second data challenge (DC2) carried out in preparation for analysis of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) by the LSST Dark Energy Science Collaboration (LSST DESC). Significant connections across multiple science domains will be a hallmark of LSST; the DC2 program represents a unique modeling effort that stresses this interconnectivity in a way that has not been attempted before. This effort encompasses a full end-to-end approach: starting from a large N-body simulation, through setting up LSST-like observations including realistic cadences, through image simulations, and finally processing with Rubin's LSST Science Pipelines. This last step ensures that we generate data products resembling those to be delivered by the Rubin Observatory as closely as is currently possible. The simulated DC2 sky survey covers six optical bands in a wide-fast-deep area of approximately 300 deg2, as well as a deep drilling field of approximately 1 deg2. We simulate 5 yr of the planned 10 yr survey. The DC2 sky survey has multiple purposes. First, the LSST DESC working groups can use the data set to develop a range of DESC analysis pipelines to prepare for the advent of actual data. Second, it serves as a realistic test bed for the image processing software under development for LSST by the Rubin Observatory. In particular, simulated data provide a controlled way to investigate certain image-level systematic effects. Finally, the DC2 sky survey enables the exploration of new scientific ideas in both static and time domain cosmology.
  •  
19.
  •  
20.
  • Björ, Bodil M, et al. (author)
  • Mortality from myocardial infarction in relation to exposure to vibration and dust among a cohort of iron-ore miners in Sweden
  • 2010
  • In: Occupational and Environmental Medicine. - : BMJ Publishing Group. - 1351-0711 .- 1470-7926. ; 67:3, s. 154-158
  • Journal article (peer-reviewed)abstract
    • OBJECTIVES: The aim of this study was to investigate myocardial infarction mortality in relation to exposure to hand-arm vibration (HAV) and whole-body vibration (WBW) as well as exposure to dust among men employed in two Swedish iron-ore mines. METHODS: This study comprised employed men at two iron-ore mines in Sweden who had been employed for at least one year from 1923 up to 1996. The causes of death were obtained from the national cause of death register from 1952 to 2001. Myocardial infarction mortality was obtained by linking personal identification numbers to the national cause of death register. Poisson regression was used for risk estimations on exposure-response relation, and analyses were made on the two age groups 60 years. RESULTS: Relative risks for myocardial infarction mortality in relation to exposure were significantly increased for exposure (0/>0) to WBV (RR: 1.18, 95% CI 1.06-1.31) and dust (RR: 1.15, 95% CI 1.02-1.31), and the results indicated an exposure-response relation for WBV and dust separately. For 60 years and younger, exposure to HAV (0/>0) (RR: 1.34, 95% CI 1.03-1.74) and WBV (0/>0) (RR: 1.39, 95% CI 1.13-1.72) increased the risk of MI mortality. An exposure-response was found for HAV and WBV, as the medium and high exposed categories showed significantly increased risk estimates. None of the exposures significantly increased the risk in the group above 60 years. The increased risk estimates for exposure to WBV remained when adjusting for exposure to dust. CONCLUSIONS: The results for the working-age (
  •  
21.
  • Bos, I., et al. (author)
  • Cerebrospinal fluid biomarkers of neurodegeneration, synaptic integrity, and astroglial activation across the clinical Alzheimer's disease spectrum
  • 2019
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 15:5, s. 644-654
  • Journal article (peer-reviewed)abstract
    • Introduction: We investigated relations between amyloid-beta (A beta) status, apolipoprotein E (APOE) e4, and cognition, with cerebrospinal fluid markers of neurogranin (Ng), neurofilament light (NFL), YKL-40, and total tau (T-tau). Methods: We included 770 individuals with normal cognition, mild cognitive impairment, and Alzheimer's disease (AD)-type dementia from the EMIF-AD Multimodal Biomarker Discovery study. We tested the association of Ng, NFL, YKL-40, and T-tau with A beta status (Ab beta- vs. A beta+), clinical diagnosis APOE epsilon 4 carriership, baseline cognition, and change in cognition. Results: Ng and T-tau distinguished between A beta+ from A beta- individuals in each clinical group, whereas NFL and YKL-40 were associated with A beta+ in nondemented individuals only. APOE epsilon 4 carriership did not influence NFL, Ng, and YKL-40 in A beta+ individuals. NFL was the best predictor of cognitive decline in A beta+ individuals across the cognitive spectrum. Discussion: Axonal degeneration, synaptic dysfunction, astroglial activation, and altered tau metabolism are involved already in preclinical AD. NFL may be a useful prognostic marker. (C) 2019 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  •  
22.
  • Bos, I., et al. (author)
  • The EMIF-AD Multimodal Biomarker Discovery study: design, methods and cohort characteristics
  • 2018
  • In: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 10
  • Journal article (peer-reviewed)abstract
    • Background: There is an urgent need for novel, noninvasive biomarkers to diagnose Alzheimer's disease (AD) in the predementia stages and to predict the rate of decline. Therefore, we set up the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study. In this report we describe the design of the study, the methods used and the characteristics of the participants. Methods: Participants were selected from existing prospective multicenter and single-center European studies. Inclusion criteria were having normal cognition (NC) or a diagnosis of mild cognitive impairment (MCI) or AD-type dementia at baseline, age above 50 years, known amyloid-beta (A beta) status, availability of cognitive test results and at least two of the following materials: plasma, DNA, magnetic resonance imaging (MRI) or cerebrospinal fluid (CSF). Targeted and untargeted metabolomic and proteomic analyses were performed in plasma, and targeted and untargeted proteomics were performed in CSF. Genome-wide SNP genotyping, next-generation sequencing and methylation profiling were conducted in DNA. Visual rating and volumetric measures were assessed on MRI. Baseline characteristics were analyzed using ANOVA or chi-square, rate of decline analyzed by linear mixed modeling. Results: We included 1221 individuals (NC n = 492, MCI n = 527, AD-type dementia n = 202) with a mean age of 67.9 (SD 8.3) years. The percentage A beta+ was 26% in the NC, 58% in the MCI, and 87% in the AD-type dementia groups. Plasma samples were available for 1189 (97%) subjects, DNA samples for 929 (76%) subjects, MRI scans for 862 (71%) subjects and CSF samples for 767 (63%) subjects. For 759 (62%) individuals, clinical follow-up data were available. In each diagnostic group, the APOE e4 allele was more frequent amongst A beta+ individuals (p < 0.001). Only in MCI was there a difference in baseline Mini Mental State Examination (MMSE) score between the A groups (p< 0.001). A beta+ had a faster rate of decline on the MMSE during follow-up in the NC (p < 0.001) and MCI (p < 0.001) groups. Conclusions: The characteristics of this large cohort of elderly subjects at various cognitive stages confirm the central roles of A beta and APOE epsilon 4 in AD pathogenesis. The results of the multimodal analyses will provide new insights into underlying mechanisms and facilitate the discovery of new diagnostic and prognostic AD biomarkers. All researchers can apply for access to the EMIF-AD MBD data by submitting a research proposal via the EMIF-AD Catalog.
  •  
23.
  • Brorsson, C., et al. (author)
  • Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data
  • 2009
  • In: Diabetes, Obesity and Metabolism. - : Wiley. - 1462-8902 .- 1463-1326. ; 11:S1, s. 60-66
  • Journal article (peer-reviewed)abstract
    • To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1 genes. We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein-protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein modules were statistically evaluated using permutation. A total of 151 genes could be mapped to nodes within the protein interaction network and their interaction partners were identified. Five protein interaction modules reached statistical significance using this approach. The identified proteins are well known in the pathogenesis of T1D, but the modules also contain additional candidates that have been implicated in beta-cell development and diabetic complications. The extensive LD within the MHC region makes it important to develop new methods for analysing genotyping data for identification of additional risk genes for T1D. Combining genetic data with knowledge about functional pathways provides new insight into mechanisms underlying T1D.
  •  
24.
  •  
25.
  • Eland, J. H. D., et al. (author)
  • Spectra of the triply charged ion CS[sub 2][sup 3+] and selectivity in molecular Auger effects
  • 2010
  • In: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 132:10, s. 104311-
  • Journal article (peer-reviewed)abstract
    • Spectra of triply charged carbon disulphide have been obtained by measuring, in coincidence, all three electrons ejected in its formation by photoionization. Measurements of the CS23+ ion in coincidence with the three electrons identify the energy range where stable trications are formed. A sharp peak in this energy range is identified as the 2Π ground state at 53.1±0.1 eV, which is the lowest electronic state according to ab initio molecular orbital calculations. Triple ionization by the double Auger effect is provisionally divided, on the basis of the pattern of energy sharing between the two Auger electrons into contributions from direct and cascade Auger processes. The spectra from the direct double Auger effect via S 2p, S 2s, and C 1s hole states contain several resolved features and show selectivity based on the initial charge localization and on the identity of the initial state. Triple ionization spectra from single Auger decay of S 2p -based core-valence states CS22+ show retention of the valence holes in this Auger process. Related ion-electron coincidence measurements give the triple ionization yields and the breakdown patterns in triple photoionization at selected photon energies from 90 eV to above the inner shell edges.
  •  
26.
  • Hedin, Lage, et al. (author)
  • N1s and O1s double ionization of the NO and N2O molecules
  • 2014
  • In: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 140:4, s. 044309-
  • Journal article (peer-reviewed)abstract
    • Single-site N1s and O1s double core ionisation of the NO and N2O molecules has been studied using a magnetic bottle many-electron coincidence time-of-flight spectrometer at photon energies of 1100 eV and 1300 eV. The double core hole energies obtained for NO are 904.8 eV (N1s(-2)) and 1179.4 eV (O1s(-2)). The corresponding energies obtained for N2O are 896.9 eV (terminal N1s(-2)), 906.5 eV (central N1s(-2)), and 1174.1 eV (O1s(-2)). The ratio between the double and single ionisation energies are in all cases close or equal to 2.20. Large chemical shifts are observed in some cases which suggest that reorganisation of the electrons upon the double ionization is significant. Delta-self-consistent field and complete active space self-consistent field (CASSCF) calculations were performed for both molecules and they are in good agreement with these results. Auger spectra of N2O, associated with the decay of the terminal and central N1s(-2) as well as with the O1s(-2) dicationic states, were extracted showing the two electrons emitted as a result of filling the double core holes. The spectra, which are interpreted using CASSCF and complete active space configuration interaction calculations, show atomic-like character. The cross section ratio between double and single core hole creation was estimated as 1.6 x 10(-3) for nitrogen at 1100 eV and as 1.3 x 10(-3) for oxygen at 1300 eV.
  •  
27.
  • Hedin, Lage, et al. (author)
  • Single site double core level ionisation of OCS
  • 2014
  • In: Chemical Physics. - : Elsevier BV. - 0301-0104 .- 1873-4421. ; 439, s. 111-116
  • Journal article (peer-reviewed)abstract
    • Single site O1s, C1s and S2p double ionisation of the OCS molecule has been investigated using a magnetic bottle multi-electron coincidence time-of-flight spectrometer. Photon energies of 1300, 750 and 520 eV, respectively, were used for the ionisation, and spectra were obtained from which the double core ionisation energies could be determined. The energies measured for 1s double ionisation are 1172 eV (O1s(-2)) and 659 eV (C1s(-2)). For the S2p double ionisation three dicationic states are expected, P-3, D-1 and S-1. The ionisation energies obtained for these states are 373 eV (P-3), 380 eV (D-1) and 388 eV (S-1). The ratio between the double and single core ionisation energies are in all cases equal or close to 2.20. Auger spectra of OCS, associated with the O1s(-2), C1s(-2) and S2p(-2) dicationic states, were also recorded incorporating both electrons emitted as a result of the filling of the two core vacancies. As for other small molecules, the spectra show an atomic-like character with Auger bands located in the range 480-560 eV for oxygen, 235-295 eV for carbon and 100-160 eV for sulphur. The interpretation of the spectra is supported by CASSCF and CASCI calculations. The cross section ratio between double and single core hole creation was estimated as 3.7 x 10(-4) for oxygen at 1300 eV, 3.7 x 10(-4) for carbon at 750 eV and as 2.2 x 10(-3) for sulphur at 520 eV. (C) 2014 Elsevier B.V. All rights reserved.
  •  
28.
  •  
29.
  • Hong, S. J., et al. (author)
  • TMEM106B and CPOX are genetic determinants of cerebrospinal fluid Alzheimer's disease biomarker levels
  • 2021
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 17:10, s. 1628-1640
  • Journal article (peer-reviewed)abstract
    • Introduction Neurofilament light (NfL), chitinase-3-like protein 1 (YKL-40), and neurogranin (Ng) are biomarkers for Alzheimer's disease (AD) to monitor axonal damage, astroglial activation, and synaptic degeneration, respectively. Methods We performed genome-wide association studies (GWAS) using DNA and cerebrospinal fluid (CSF) samples from the EMIF-AD Multimodal Biomarker Discovery study for discovery, and the Alzheimer's Disease Neuroimaging Initiative study for validation analyses. GWAS were performed for all three CSF biomarkers using linear regression models adjusting for relevant covariates. Results We identify novel genome-wide significant associations between DNA variants in TMEM106B and CSF levels of NfL, and between CPOX and YKL-40. We confirm previous work suggesting that YKL-40 levels are associated with DNA variants in CHI3L1. Discussion Our study provides important new insights into the genetic architecture underlying interindividual variation in three AD-related CSF biomarkers. In particular, our data shed light on the sequence of events regarding the initiation and progression of neuropathological processes relevant in AD.
  •  
30.
  • Iriondo, A., et al. (author)
  • Cerebrospinal Fluid 7-Ketocholesterol Level is Associated with Amyloid-beta(42) and White Matter Microstructure in Cognitively Healthy Adults
  • 2020
  • In: Journal of Alzheimers Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 76:2, s. 643-656
  • Journal article (peer-reviewed)abstract
    • Background: Abnormal cholesterol metabolism changes the neuronal membrane and may promote amyloidogenesis. Oxysterols in cerebrospinal fluid (CSF) are related to Alzheimer's disease (AD) biomarkers in mild cognitive impairment and dementia. Cholesterol turnover is important for axonal and white matter (WM) microstructure maintenance. Objective: We aim to demonstrate that the association of oxysterols, AD biomarkers, and WM microstructure occurs early in asymptomatic individuals. Methods: We studied the association of inter-individual variability of CSF 24-hydroxycholesterol (24-OHC), 27-hydroxycholesterol (27-OHC), 7-ketocholesterol (7-KC), 7 beta-hydroxycholesterol (7 beta-OHC), amyloid-beta(42) (A beta(42)), total-tau (t-tau), phosphorylated-tau (p-tau), neurofilament (NfL), and WM microstructure using diffusion tensor imaging, generalized linear models and moderation/mediation analyses in 153 healthy adults. Results: Higher 7-KC levels were related to lower A beta(42), indicative of greater AD pathology (p = 0.041). Higher 7-KC levels were related to lower fractional anisotropy (FA) and higher mean (MD), axial (AxD), and radial (RD) diffusivity. 7-KC modulated the association between AxD and NfL in the corpus callosum splenium (B = 39.39, p = 0.017), genu (B = 68.64, p = 0.000), and fornix (B = 10.97, p = 0.000). Lower A beta(42) levels were associated to lower FA and higher MD, AxD, and RD in the fornix, corpus callosum, inferior longitudinal fasciculus, and hippocampus. The association between AxD and A beta(42) was moderated by 7K-C (p = 0.048). Conclusion: This study adds clinical evidence to support the role of 7K-C on axonal integrity and the involvement of cholesterol metabolism in the A beta(42) generation process.
  •  
31.
  • Jansen, Willemijn J, et al. (author)
  • Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum.
  • 2022
  • In: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 79:3, s. 228-243
  • Journal article (peer-reviewed)abstract
    • One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design.To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates.This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria.Alzheimer disease biomarkers detected on PET or in CSF.Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations.Among the 19097 participants (mean [SD] age, 69.1 [9.8] years; 10148 women [53.1%]) included, 10139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P=.04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P=.004), subjective cognitive decline (9%; 95% CI, 3%-15%; P=.005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P=.004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P=.18).This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies.
  •  
32.
  • Lilley, J H, et al. (author)
  • Molecular characterization of the fish-pathogenic fungus Aphanomyces invadans.
  • 2003
  • In: Journal of Fish Diseases. - : Wiley. - 0140-7775 .- 1365-2761. ; 26:5, s. 263-75
  • Journal article (peer-reviewed)abstract
    • Aphanomyces invadans (Saprolegniaceae) is a peronosporomycete fungus associated with the serious fish disease, epizootic ulcerative syndrome (EUS), also known as mycotic granulomatosis. In this study, interspecific relationships were examined between A. invadans isolates and other aquatic animal pathogenic Saprolegniaceae, and saprophytic Saprolegniaceae from EUS-affected areas. Restriction fragment length polymorphisms and sequences of ribosomal DNA confirmed that A. invadans is distinct from all other species studied. A sequence from the internal transcribed spacer region ITS1, unique to A. invadans, was used to design primers for a PCR-based diagnostic test. Intraspecific relationships were also examined by random amplification of polymorphic DNA using 20 isolates of A. invadans from six countries. The isolates showed a high degree of genetic homogeneity using 14 random ten-mer primers. This provides evidence that the fungus has spread across Asia in one relatively rapid episode, which is consistent with reports of outbreaks of EUS. Physiological distinctions between A. invadans and other Aphanomyces species based on a data set of 16 growth parameters showed remarkable taxonomic congruence with the molecular phylogeny.
  •  
33.
  • López, Miguel, et al. (author)
  • Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance
  • 2010
  • In: Nature Medicine. - : Nature Publishing Group. - 1078-8956 .- 1546-170X. ; 16:9, s. 1001-1008
  • Journal article (peer-reviewed)abstract
    • Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.
  •  
34.
  •  
35.
  • Neumann, A., et al. (author)
  • Rare variants in IFFO1, DTNB, NLRC3 and SLC22A10 associate with Alzheimer's disease CSF profile of neuronal injury and inflammation
  • 2022
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27, s. 1990-1999
  • Journal article (peer-reviewed)abstract
    • Alzheimer's disease (AD) biomarkers represent several neurodegenerative processes, such as synaptic dysfunction, neuronal inflammation and injury, as well as amyloid pathology. We performed an exome-wide rare variant analysis of six AD biomarkers (beta-amyloid, total/phosphorylated tau, NfL, YKL-40, and Neurogranin) to discover genes associated with these markers. Genetic and biomarker information was available for 480 participants from two studies: EMIF-AD and ADNI. We applied a principal component (PC) analysis to derive biomarkers combinations, which represent statistically independent biological processes. We then tested whether rare variants in 9576 protein-coding genes associate with these PCs using a Meta-SKAT test. We also tested whether the PCs are intermediary to gene effects on AD symptoms with a SMUT test. One PC loaded on NfL and YKL-40, indicators of neuronal injury and inflammation. Four genes were associated with this PC: IFFO1, DTNB, NLRC3, and SLC22A10. Mediation tests suggest, that these genes also affect dementia symptoms via inflammation/injury. We also observed an association between a PC loading on Neurogranin, a marker for synaptic functioning, with GABBR2 and CASZ1, but no mediation effects. The results suggest that rare variants in IFFO1, DTNB, NLRC3, and SLC22A10 heighten susceptibility to neuronal injury and inflammation, potentially by altering cytoskeleton structure and immune activity disinhibition, resulting in an elevated dementia risk. GABBR2 and CASZ1 were associated with synaptic functioning, but mediation analyses suggest that the effect of these two genes on synaptic functioning is not consequential for AD development.
  •  
36.
  •  
37.
  • Patterson, Allison, et al. (author)
  • Foraging range scales with colony size in high-latitude seabirds
  • 2022
  • In: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 32:17, s. 3800-3807
  • Journal article (peer-reviewed)abstract
    • Density-dependent prey depletion around breeding colonies has long been considered an important factor controlling the population dynamics of colonial animals.1, 2, 3, 4 Ashmole proposed that as seabird colony size increases, intraspecific competition leads to declines in reproductive success, as breeding adults must spend more time and energy to find prey farther from the colony.1 Seabird colony size often varies over several orders of magnitude within the same species and can include millions of individuals per colony.5,6 As such, colony size likely plays an important role in determining the individual behavior of its members and how the colony interacts with the surrounding environment.6 Using tracking data from murres (Uria spp.), the world’s most densely breeding seabirds, we show that the distribution of foraging-trip distances scales to colony size0.33 during the chick-rearing stage, consistent with Ashmole’s halo theory.1,2 This pattern occurred across colonies varying in size over three orders of magnitude and distributed throughout the North Atlantic region. The strong relationship between colony size and foraging range means that the foraging areas of some colonial species can be estimated from colony sizes, which is more practical to measure over a large geographic scale. Two-thirds of the North Atlantic murre population breed at the 16 largest colonies; by extrapolating the predicted foraging ranges to sites without tracking data, we show that only two of these large colonies have significant coverage as marine protected areas. Our results are an important example of how theoretical models, in this case, Ashmole’s version of central-place-foraging theory, can be applied to inform conservation and management in colonial breeding species.
  •  
38.
  •  
39.
  • Shi, L., et al. (author)
  • Multiomics profiling of human plasma and cerebrospinal fluid reveals ATN-derived networks and highlights causal links in Alzheimer's disease
  • 2023
  • In: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:8, s. 3359-3364
  • Journal article (peer-reviewed)abstract
    • IntroductionThis study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. MethodsUsing the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). ResultsAT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DiscussionThis study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.
  •  
40.
  • Shi, L., et al. (author)
  • Plasma Proteomic Biomarkers Relating to Alzheimer's Disease: A Meta-Analysis Based on Our Own Studies
  • 2021
  • In: Frontiers in Aging Neuroscience. - : Frontiers Media SA. - 1663-4365. ; 13
  • Journal article (peer-reviewed)abstract
    • Background and Objective: Plasma biomarkers for the diagnosis and stratification of Alzheimer's disease (AD) are intensively sought. However, no plasma markers are well established so far for AD diagnosis. Our group has identified and validated various blood-based proteomic biomarkers relating to AD pathology in multiple cohorts. The study aims to conduct a meta-analysis based on our own studies to systematically assess the diagnostic performance of our previously identified blood biomarkers. Methods: To do this, we included seven studies that our group has conducted during the last decade. These studies used either Luminex xMAP or ELISA to measure proteomic biomarkers. As proteins measured in these studies differed, we selected protein based on the criteria that it must be measured in at least four studies. We then examined biomarker performance using random-effect meta-analyses based on the mean difference between biomarker concentrations in AD and controls (CTL), AD and mild cognitive impairment (MCI), MCI, and CTL as well as MCI converted to dementia (MCIc) and non-converted (MCInc) individuals. Results: An overall of 2,879 subjects were retrieved for meta-analysis including 1,053 CTL, 895 MCI, 882 AD, and 49 frontotemporal dementia (FTD) patients. Six proteins were measured in at least four studies and were chosen for meta-analyses for AD diagnosis. Of them, three proteins had significant difference between AD and controls, among which alpha-2-macroglobulin (A2M) and ficolin-2 (FCN2) increased in AD while fibrinogen gamma chain (FGG) decreased in AD compared to CTL. Furthermore, FGG significantly increased in FTD compared to AD. None of the proteins passed the significance between AD and MCI, or MCI and CTL, or MCIc and MCInc, although complement component 4 (CC4) tended to increase in MCIc individuals compared to MCInc. Conclusions: The results suggest that A2M, FCN2, and FGG are promising biomarkers to discriminate AD patients from controls, which are worthy of further validation.
  •  
41.
  •  
42.
  •  
43.
  • Van Deerlin, Vivian M, et al. (author)
  • Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:3, s. 234-239
  • Journal article (peer-reviewed)abstract
    • Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.
  •  
44.
  •  
45.
  • Visser, P. J., et al. (author)
  • Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer's disease
  • 2022
  • In: Molecular Neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 17:1
  • Journal article (peer-reviewed)abstract
    • Background Increased total tau (t-tau) in cerebrospinal fluid (CSF) is a key characteristic of Alzheimer's disease (AD) and is considered to result from neurodegeneration. T-tau levels, however, can be increased in very early disease stages, when neurodegeneration is limited, and can be normal in advanced disease stages. This suggests that t-tau levels may be driven by other mechanisms as well. Because tau pathophysiology is emerging as treatment target for AD, we aimed to clarify molecular processes associated with CSF t-tau levels. Methods We performed a proteomic, genomic, and imaging study in 1380 individuals with AD, in the preclinical, prodromal, and mild dementia stage, and 380 controls from the Alzheimer's Disease Neuroimaging Initiative and EMIF-AD Multimodality Biomarker Discovery study. Results We found that, relative to controls, AD individuals with increased t-tau had increased CSF concentrations of over 400 proteins enriched for neuronal plasticity processes. In contrast, AD individuals with normal t-tau had decreased levels of these plasticity proteins and showed increased concentrations of proteins indicative of blood-brain barrier and blood-CSF barrier dysfunction, relative to controls. The distinct proteomic profiles were already present in the preclinical AD stage and persisted in prodromal and dementia stages implying that they reflect disease traits rather than disease states. Dysregulated plasticity proteins were associated with SUZ12 and REST signaling, suggesting aberrant gene repression. GWAS analyses contrasting AD individuals with and without increased t-tau highlighted several genes involved in the regulation of gene expression. Targeted analyses of SNP rs9877502 in GMNC, associated with t-tau levels previously, correlated in individuals with AD with CSF concentrations of 591 plasticity associated proteins. The number of APOE-e4 alleles, however, was not associated with the concentration of plasticity related proteins. Conclusions CSF t-tau levels in AD are associated with altered levels of proteins involved in neuronal plasticity and blood-brain and blood-CSF barrier dysfunction. Future trials may need to stratify on CSF t-tau status, as AD individuals with increased t-tau and normal t-tau are likely to respond differently to treatment, given their opposite CSF proteomic profiles.
  •  
46.
  • Wesenhagen, K. E. J., et al. (author)
  • Effects of age, amyloid, sex, and APOE epsilon 4 on the CSF proteome in normal cognition
  • 2022
  • In: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Introduction It is important to understand which biological processes change with aging, and how such changes are associated with increased Alzheimer's disease (AD) risk. We studied how cerebrospinal fluid (CSF) proteomics changed with age and tested if associations depended on amyloid status, sex, and apolipoprotein E sigma 4 genotype. Methods We included 277 cognitively intact individuals aged 46 to 89 years from Alzheimer's Disease Neuroimaging Initiative, European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery, and Metabolic Syndrome in Men. In total, 1149 proteins were measured with liquid chromatography mass spectrometry with multiple reaction monitoring/Rules-Based Medicine, tandem mass tag mass spectrometry, and SOMAscan. We tested associations between age and protein levels in linear models and tested enrichment for Reactome pathways. Results Levels of 252 proteins increased with age independently of amyloid status. These proteins were associated with immune and signaling processes. Levels of 21 proteins decreased with older age exclusively in amyloid abnormal participants and these were enriched for extracellular matrix organization. Discussion We found amyloid-independent and -dependent CSF proteome changes with older age, perhaps representing physiological aging and early AD pathology.
  •  
47.
  • Zhang, Y. T., et al. (author)
  • Predicting AT(N) pathologies in Alzheimer's disease from blood-based proteomic data using neural networks
  • 2022
  • In: Frontiers in Aging Neuroscience. - : Frontiers Media SA. - 1663-4365. ; 14
  • Journal article (peer-reviewed)abstract
    • Background and objective: Blood-based biomarkers represent a promising approach to help identify early Alzheimer's disease (AD). Previous research has applied traditional machine learning (ML) to analyze plasma omics data and search for potential biomarkers, but the most modern ML methods based on deep learning has however been scarcely explored. In the current study, we aim to harness the power of state-of-the-art deep learning neural networks (NNs) to identify plasma proteins that predict amyloid, tau, and neurodegeneration (AT[N]) pathologies in AD.Methods: We measured 3,635 proteins using SOMAscan in 881 participants from the European Medical Information Framework for AD Multimodal Biomarker Discovery study (EMIF-AD MBD). Participants underwent measurements of brain amyloid 13 (A13) burden, phosphorylated tau (p-tau) burden, and total tau (t-tau) burden to determine their AT(N) statuses. We ranked proteins by their association with A13, p-tau, t-tau, and AT(N), and fed the top 100 proteins along with age and apolipoprotein E (APOE) status into NN classifiers as input features to predict these four outcomes relevant to AD. We compared NN performance of using proteins, age, and APOE genotype with performance of using age and APOE status alone to identify protein panels that optimally improved the prediction over these main risk factors. Proteins that improved the prediction for each outcome were aggregated and nominated for pathway enrichment and protein-protein interaction enrichment analysis.Results: Age and APOE alone predicted A13, p-tau, t-tau, and AT(N) burden with area under the curve (AUC) scores of 0.748, 0.662, 0.710, and 0.795. The addition of proteins significantly improved AUCs to 0.782, 0.674, 0.734, and 0.831, respectively. The identified proteins were enriched in five clusters of AD-associated pathways including human immunodeficiency virus 1 infection, p53 signaling pathway, and phosphoinositide-3-kinase-protein kinase B/Akt signaling pathway.Conclusion: Combined with age and APOE genotype, the proteins identified have the potential to serve as blood-based biomarkers for AD and await validation in future studies. While the NNs did not achieve better scores than the support vector machine model used in our previous study, their performances were likely limited by small sample size.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-47 of 47
Type of publication
journal article (47)
Type of content
peer-reviewed (44)
other academic/artistic (3)
Author/Editor
Lleó, A. (17)
Engelborghs, S. (17)
Popp, J (16)
Martinez-Lage, P. (16)
Zetterberg, Henrik, ... (15)
Scheltens, P (15)
show more...
Vandenberghe, R (13)
Tsolaki, M (13)
Sleegers, K (13)
Blennow, Kaj, 1958 (11)
Lovestone, S (11)
Bertram, L (11)
Visser, P. J. (9)
Bos, I (9)
Soininen, H (8)
Alcolea, D. (8)
Barkhof, F (8)
Rodriguez-Rodriguez, ... (8)
Legido-Quigley, C (8)
Mecocci, P (7)
Fortea, J. (7)
Van Broeckhoven, C (7)
Aarsland, D (6)
Ruiz, A. (6)
Boada, M. (6)
Padovani, A (6)
Wallin, Anders, 1950 (6)
Pastor, P (6)
Seshadri, S (6)
Clarimón, J. (6)
Froelich, L (6)
Lage, K. (6)
Maier, W (6)
van der Flier, WM (6)
Marquié, M. (6)
Küçükali, F (6)
de Rojas, I (6)
Diez-Fairen, M (6)
González-Pérez, A (6)
Hernández, I (6)
Lage, C (6)
Love, S (6)
Macías, J (6)
Orellana, A (6)
Pasquier, F (6)
Pérez-Cordón, A (6)
Pérez-Tur, J (6)
Tárraga, L (6)
Tesí, N (6)
de Mendonça, A (6)
show less...
University
Karolinska Institutet (28)
University of Gothenburg (21)
Uppsala University (9)
Stockholm University (8)
Lund University (7)
Örebro University (6)
show more...
Umeå University (1)
Royal Institute of Technology (1)
Jönköping University (1)
Stockholm School of Economics (1)
Högskolan Dalarna (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (47)
Research subject (UKÄ/SCB)
Medical and Health Sciences (31)
Natural sciences (7)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view