SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lagerstedt Jens) "

Sökning: WFRF:(Lagerstedt Jens)

  • Resultat 1-50 av 66
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Jens A, et al. (författare)
  • User profiling for pre-fetching or caching in a catch-up TV network
  • 2016
  • Ingår i: 2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). - 9781467390446
  • Konferensbidrag (refereegranskat)abstract
    • We investigate the potential of different pre-fetching and/or caching strategies for different user behaviour with respect to surfing or browsing in a catch-up-TV network. To this end we identify accounts and channels associated with strong or weak surfing or browsing respectively and study the distributions of hold times for the different types of behaviour. Finally we present results from a request prediction model and a caching simulation for the different types of behaviour and find that the results are relatively similar.
  •  
2.
  •  
3.
  • Azhar, Salman, et al. (författare)
  • Novel ABCA1 peptide agonists with antidiabetic action
  • 2019
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 480, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Previously, apoE-derived ABCA1 agonist peptides have been shown to possess anti-atherosclerotic and possibly antidiabetic properties. Here we assessed the in vitro and in vivo actions of a second generation of ABCA1 peptide agonists, CS6253 and T6991-2, on glucose homeostasis. The results show that these two peptides improve glucose tolerance in a prediabetic diet-induced obesity mouse model by enhancing insulin secretion. It was further demonstrated that T6991-2 also improved glucose tolerance in leptin-deficient (ob/ob) mice. CS6253 increased insulin secretion both under basal conditions and in response to high glucose stimulation in pancreatic INS-1 β-cells rendered leptin receptor deficient with specific siRNA. Additional in vitro cell studies suggest that the CS6253 agonist attenuates hepatic gluconeogenesis and glucose transport. It also potentiates insulin-stimulated glucose uptake and utilization. These observed anti-diabetic actions suggest additional benefits of the CS6253 and T6991-2 ABCA1 peptide agonists for cardiovascular disease beyond their direct anti-atherosclerosis properties previously described.
  •  
4.
  • Bacos, Karl, et al. (författare)
  • Type 2 diabetes candidate genes, including PAX5, cause impaired insulin secretion in human pancreatic islets
  • 2023
  • Ingår i: The Journal of clinical investigation. - 0021-9738 .- 1558-8238. ; 133:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic β-cells. To identify candidates contributing to T2D pathophysiology, we studied human pancreatic islets from ~300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified islet expression changes may predispose to diabetes, as they associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human β-cells based on single-cell RNA-sequencing data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D-SNPs. Mouse knock-out strains demonstrated that T2D-associated candidates regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing β-cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we identified molecular alterations in human pancreatic islets contributing to β-cell dysfunction in T2D pathophysiology.
  •  
5.
  • Banke, Elin, et al. (författare)
  • Superantigen activates the gp130 receptor on adipocytes resulting in altered adipocyte metabolism.
  • 2014
  • Ingår i: Metabolism, Clinical and Experimental. - : Elsevier BV. - 1532-8600. ; 63:6, s. 831-840
  • Tidskriftsartikel (refereegranskat)abstract
    • The bacteria Staphylococcus aureus is part of the normal bacterial flora and produces a repertoire of enterotoxins which can cause food poisoning and toxic shock and might contribute to the pathogenesis of inflammatory diseases. These enterotoxins directly cross-link the T cell receptor with MHC class II, activating large amounts of T cells and are therefore called superantigens. It was recently discovered that the superantigen SEA binds to the cytokine receptor gp130. As obesity and type 2 diabetes are highly associated with inflammation of the adipose tissue and gp130 has been shown to play an important role in adipocytes, we wanted to investigate the effect of SEA on adipocyte signaling and function.
  •  
6.
  • Correa, Yubexi, et al. (författare)
  • Lipid exchange of apolipoprotein A-I amyloidogenic variants in reconstituted high-density lipoprotein with artificial membranes
  • 2024
  • Ingår i: Protein Science. - : John Wiley & Sons. - 0961-8368 .- 1469-896X. ; 33:5
  • Tidskriftsartikel (refereegranskat)abstract
    • High-density lipoproteins (HDLs) are responsible for removing cholesterol from arterial walls, through a process known as reverse cholesterol transport. The main protein in HDL, apolipoprotein A-I (ApoA-I), is essential to this process, and changes in its sequence significantly alter HDL structure and functions. ApoA-I amyloidogenic variants, associated with a particular hereditary degenerative disease, are particularly effective at facilitating cholesterol removal, thus protecting carriers from cardiovascular disease. Thus, it is conceivable that reconstituted HDL (rHDL) formulations containing ApoA-I proteins with functional/structural features similar to those of amyloidogenic variants hold potential as a promising therapeutic approach. Here we explored the effect of protein cargo and lipid composition on the function of rHDL containing one of the ApoA-I amyloidogenic variants G26R or L174S by Fourier transformed infrared spectroscopy and neutron reflectometry. Moreover, small-angle x-ray scattering uncovered the structural and functional differences between rHDL particles, which could help to comprehend higher cholesterol efflux activity and apparent lower phospholipid (PL) affinity. Our findings indicate distinct trends in lipid exchange (removal vs. deposition) capacities of various rHDL particles, with the rHDL containing the ApoA-I amyloidogenic variants showing a markedly lower ability to remove lipids from artificial membranes compared to the rHDL containing the native protein. This effect strongly depends on the level of PL unsaturation and on the particles' ultrastructure. The study highlights the importance of the protein cargo, along with lipid composition, in shaping rHDL structure, contributing to our understanding of lipid–protein interactions and their behavior.
  •  
7.
  • Cronjé, Héléne T., et al. (författare)
  • Genetic evidence implicating natriuretic peptide receptor-3 in cardiovascular disease risk : a Mendelian randomization study
  • 2023
  • Ingår i: BMC Medicine. - 1741-7015. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: C-type natriuretic peptide (CNP) is a known target for promoting growth and has been implicated as a therapeutic opportunity for the prevention and treatment of cardiovascular disease (CVD). This study aimed to explore the effect of CNP on CVD risk using the Mendelian randomization (MR) framework. Methods: Instrumental variables mimicking the effects of pharmacological intervention on CNP were identified as uncorrelated genetic variants located in the genes coding for its primary receptors, natriuretic peptide receptors-2 and 3 (NPR2 and NPR3), that associated with height. We performed MR and colocalization analyses to investigate the effects of NPR2 signalling and NPR3 function on CVD outcomes and risk factors. MR estimates were compared to those obtained when considering height variants from throughout the genome. Results: Genetically-proxied reduced NPR3 function was associated with a lower risk of CVD, with odds ratio (OR) 0.74 per standard deviation (SD) higher NPR3-predicted height, and 95% confidence interval (95% CI) 0.64–0.86. This effect was greater in magnitude than observed when considering height variants from throughout the genome. For CVD subtypes, similar MR associations for NPR3-predicted height were observed when considering the outcomes of coronary artery disease (0.75, 95% CI 0.60–0.92), stroke (0.69, 95% CI 0.50–0.95) and heart failure (0.77, 95% CI 0.58–1.02). Consideration of CVD risk factors identified systolic blood pressure (SBP) as a potential mediator of the NPR3-related CVD risk lowering. For stroke, we found that the MR estimate for NPR3 was greater in magnitude than could be explained by a genetically predicted SBP effect alone. Colocalization results largely supported the MR findings, with no evidence of results being driven by effects due to variants in linkage disequilibrium. There was no MR evidence supporting effects of NPR2 on CVD risk, although this null finding could be attributable to fewer genetic variants being identified to instrument this target. Conclusions: This genetic analysis supports the cardioprotective effects of pharmacologically inhibiting NPR3 receptor function, which is only partly mediated by an effect on blood pressure. There was unlikely sufficient statistical power to investigate the cardioprotective effects of NPR2 signalling.
  •  
8.
  • Dalla-Riva, Jonathan, et al. (författare)
  • Discoidal HDL and apoA-I-derived peptides improve glucose uptake in skeletal muscle.
  • 2013
  • Ingår i: Journal of Lipid Research. - 1539-7262. ; 54:5, s. 1275-1282
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid-free apoA-I and mature spherical HDL have been shown to induce glucose uptake in skeletal muscle. To exploit apoA-I and HDL states for diabetes therapy, further understanding of interaction between muscle and apoA-I is required. This study has examined if nascent discoidal HDL, in which apoA-I attains a different conformation from mature HDL and lipid-free states, could induce muscle glucose uptake and if a specific domain of apoA-I can mediate this effect. Using L6 myotubes stimulated with synthetic reconstituted discoidal HDL (rHDL), we show a glucose uptake effect comparable to insulin. Increased plasma membrane GLUT4 levels in ex vivo rHDL-stimulated myofibers from HA-GLUT4-GFP transgenic mice support this observation. rHDL increased phosphorylation of AMP kinase (AMPK) and acetyl-coA carboxylase (ACC) but not Akt. A survey of domain specific peptides of apoA-I showed that the lipid-free C-terminal 190-243 fragment increases plasma membrane GLUT4, promotes glucose uptake, and activates AMPK signaling but not Akt. This may be explained by changes in α-helical content of 190-243 fragment versus full-length lipid-free apoA-I as assessed by circular dichroism spectroscopy. JLR Discoidal HDL and the 190-243 peptide of apoA-I are potent agonists of glucose uptake in skeletal muscle and the C-terminal α-helical content of apoA-I may be an important determinant of this effect.
  •  
9.
  • Dalla-Riva, Jonathan, et al. (författare)
  • Structural and Functional Analysis of the ApolipoproteinA-I A164S Variant
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:11, s. e0143915-e0143915
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a clinical need for conceptually new treatments that target the excessive activation of inflammatory pathways during systemic infection. Thrombin-derived C-terminal peptides (TCPs) are endogenous anti-infective immunomodulators interfering with CD14-mediated TLR-dependent immune responses. Here we describe the development of a peptide-based compound for systemic use, sHVF18, expressing the evolutionarily conserved innate structural fold of natural TCPs. Using a combination of structure- and in silico-based design, nuclear magnetic resonance spectroscopy, biophysics, mass spectrometry, cellular, and in vivo studies, we here elucidate the structure, CD14 interactions, protease stability, transcriptome profiling, and therapeutic efficacy of sHVF18. The designed peptide displays a conformationally stabilized, protease resistant active innate fold and targets the LPS-binding groove of CD14. In vivo, it shows therapeutic efficacy in experimental models of endotoxin shock in mice and pigs and increases survival in mouse models of systemic polymicrobial infection. The results provide a drug class based on Nature ' s own anti-infective principles.
  •  
10.
  • Del Giudice, Rita, et al. (författare)
  • High-efficient bacterial production of human ApoA-I amyloidogenic variants
  • 2018
  • Ingår i: Protein Science. - : Wiley. - 0961-8368. ; 27:12, s. 2101-2109
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein A-I (ApoA-I)-related amyloidosis is a rare disease caused by missense mutations in the APOA1 gene. These mutations lead to protein aggregation and abnormal accumulation of ApoA-I amyloid fibrils in heart, liver, kidneys, skin, nerves, ovaries, or testes. Consequently, the carriers are at risk of single- or multi-organ failure and of need of organ transplantation. Understanding the basic molecular structure and function of ApoA-I amyloidogenic variants, as well as their biological effects, is, therefore, of great interest. However, the intrinsic low stability of this type of proteins makes their overexpression and purification difficult. To overcome this barrier, we here describe an optimized production and purification procedure for human ApoA-I amyloidogenic proteins that efficiently provides between 46 mg and 91 mg (depending on the protein variant) of pure protein per liter of Escherichia coli culture. Structural integrity of the amyloidogenic and native ApoA-I proteins were verified by circular dichroism spectroscopy and intrinsic fluorescence analysis, and preserved functionality was demonstrated by use of a lipid clearance assay as well as by reconstitution of high-density lipoprotein (HDL) particles. In conclusion, the use of the described high-yield protein production system to obtain amyloidogenic ApoA-I proteins, and their native counterpart, will enable molecular and cellular experimental studies aimed to explain the molecular basis for this rare disease.
  •  
11.
  • Del Giudice, Rita, et al. (författare)
  • Structural determinants in ApoA-I amyloidogenic variants explain improved cholesterol metabolism despite low HDL levels
  • 2017
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002. ; 1863:12, s. 3038-3048
  • Tidskriftsartikel (refereegranskat)abstract
    • Twenty Apolipoprotein A-I (ApoA-I) variants are responsible for a systemic hereditary amyloidosis in which protein fibrils can accumulate in different organs, leading to their failure. Several ApoA-I amyloidogenic mutations are also associated with hypoalphalipoproteinemia, low ApoA-I and high-density lipoprotein (HDL)-cholesterol plasma levels; however, subjects affected by ApoA-I-related amyloidosis do not show a higher risk of cardiovascular diseases (CVD). The structural features, the lipid binding properties and the functionality of four ApoA-I amyloidogenic variants were therefore inspected in order to clarify the paradox observed in the clinical phenotype of the affected subjects. Our results show that ApoA-I amyloidogenic variants are characterized by a different oligomerization pattern and that the position of the mutation in the ApoA-I sequence affects the molecular structure of the formed HDL particles. Although lipidation increases ApoA-I proteins stability, all the amyloidogenic variants analyzed show a lower affinity for lipids, both in vitro and in ex vivo mouse serum. Interestingly, the lower efficiency at forming HDL particles is compensated by a higher efficiency at catalysing cholesterol efflux from macrophages. The decreased affinity of ApoA-I amyloidogenic variants for lipids, together with the increased efficiency in the cholesterol efflux process, could explain why, despite the unfavourable lipid profile, patients affected by ApoA-I related amyloidosis do not show a higher CVD risk.
  •  
12.
  • Del Giudice, Rita, et al. (författare)
  • The Apparent Organ-Specificity of Amyloidogenic ApoA-I Variants Is Linked to Tissue-Specific Extracellular Matrix Components
  • 2023
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein A-I (ApoA-I) amyloidosis is a rare protein misfolding disease where fibrils of the N-terminal domain of the protein accumulate in several organs, leading to their failure. Although ApoA-I amyloidosis is systemic, the different amyloidogenic variants show a preferential tissue accumulation that appears to correlate with the location of the mutation in the protein sequence and with the local extracellular microenvironment. However, the factors leading to cell/tissues damage, as well as the mechanisms behind the observed organ specificity are mostly unknown. Therefore, we investigated the impact of ApoA-I variants on cell physiology and the mechanisms driving the observed tissue specificity. We focused on four ApoA-I amyloidogenic variants and analyzed their cytotoxicity as well as their ability to alter redox homeostasis in cell lines from different tissues (liver, kidney, heart, skin). Moreover, variant-specific interactions with extracellular matrix (ECM) components were measured by synchrotron radiation circular dichroism and enzyme-linked immunosorbent assay. Data indicated that ApoA-I variants exerted a cytotoxic effect in a time and cell-type-specific manner that seems to be due to protein accumulation in lysosomes. Interestingly, the ApoA-I variants exhibited specific preferential binding to the ECM components, reflecting their tissue accumulation pattern in vivo. While the binding did not to appear to affect protein conformations in solution, extended incubation of the amyloidogenic variants in the presence of different ECM components resulted in different aggregation propensity and aggregation patterns.
  •  
13.
  • den Hartigh, Laura J., et al. (författare)
  • Postprandial apoE Isoform and Conformational Changes Associated with VLDL Lipolysis Products Modulate Monocyte Inflammation
  • 2012
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Postprandial hyperlipemia, characterized by increased circulating very low-density lipoproteins (VLDL) and circulating lipopolysaccharide (LPS), has been proposed as a mechanism of vascular injury. Our goal was to examine the interactions between postprandial lipoproteins, LPS, and apoE3 and apoE4 on monocyte activation. Methods and Results: We showed that apoE3 complexed to phospholipid vesicles attenuates LPS-induced THP-1 monocyte cytokine expression, while apoE4 increases expression. ELISA revealed that apoE3 binds to LPS with higher affinity than apoE4. Electron paramagnetic resonance (EPR) spectroscopy of site-directed spin labels placed on specific amino acids of apoE3 showed that LPS interferes with conformational changes normally associated with lipid binding. Specifically, compared to apoE4, apoE bearing the E3-like R112 -> Ser mutation displays increased self association when exposed to LPS, consistent with a stronger apoE3-LPS interaction. Additionally, lipolysis of fasting VLDL from normal human donors attenuated LPS-induced TNF alpha secretion from monocytes to a greater extent than postprandial VLDL, an effect partially reversed by blocking apoE. This effect was reproduced using fasting VLDL lipolysis products from e3/e3 donors, but not from e4/e4 subjects, suggesting that apoE3 on fasting VLDL prevents LPS-induced inflammation more readily than apoE4. Conclusion: Postprandial apoE isoform and conformational changes associated with VLDL dramatically modulate vascular inflammation.
  •  
14.
  • Domingo-Espín, Joan, et al. (författare)
  • Dual actions of apolipoprotein A-I on glucose-stimulated insulin secretion and insulin-independent peripheral tissue glucose uptake lead to increased heart and skeletal muscle glucose disposal
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 65:7, s. 1838-1848
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein A-I (apoA-I) of HDL is central to the transport of cholesterol in circulation. ApoA-I also provides glucose control with described in vitro effects of apoA-I on β-cell insulin secretion and muscle glucose uptake. In addition, apoA-I injections in insulin-resistant diet-induced obese (DIO) mice lead to increased glucose-stimulated insulin secretion (GSIS) and peripheral tissue glucose uptake. However, the relative contribution of apoA-I as an enhancer of GSIS in vivo and as a direct stimulator of insulin-independent glucose uptake is not known. Here, DIO mice with instant and transient blockade of insulin secretion were used in glucose tolerance tests and in positron emission tomography analyses. Data demonstrate that apoA-I to an equal extent enhances GSIS and acts as peripheral tissue activator of insulin-independent glucose uptake and verify skeletal muscle as an apoA-I target tissue. Intriguingly, our analyses also identify the heart as an important target tissue for the apoA-I-stimulated glucose uptake, with potential implications in diabetic cardiomyopathy. Explorations of apoA-I as a novel antidiabetic drug should extend to treatments of diabetic cardiomyopathy and other cardiovascular diseases in patients with diabetes.
  •  
15.
  • Domingo-Espín, Joan, et al. (författare)
  • Site-specific glycations of apolipoprotein A-I lead to differentiated functional effects on lipid-binding and on glucose metabolism
  • 2018
  • Ingår i: Biochimica et Biophysica Acta - Molecular Basis of Disease. - : Elsevier BV. - 0925-4439. ; 1864:9, s. 2822-2834
  • Tidskriftsartikel (refereegranskat)abstract
    • Prolonged hyperglycemia in poorly controlled diabetes leads to an increase in reactive glucose metabolites that covalently modify proteins by non-enzymatic glycation reactions. Apolipoprotein A-I (apoA-I) of high-density lipoprotein (HDL) is one of the proteins that becomes glycated in hyperglycemia. The impact of glycation on apoA-I protein structure and function in lipid and glucose metabolism were investigated. ApoA-I was chemically glycated by two different glucose metabolites (methylglyoxal and glycolaldehyde). Synchrotron radiation and conventional circular dichroism spectroscopy were used to study apoA-I structure and stability. The ability to bind lipids was measured by lipid-clearance assay and native gel analysis, and cholesterol efflux was measured by using lipid-laden J774 macrophages. Diet induced obese mice with established insulin resistance, L6 rat and C2C12 mouse myocytes, as well as INS-1E rat insulinoma cells, were used to determine in vivo and in vitro glucose uptake and insulin secretion. Site-specific, covalent modifications of apoA-I (lysines or arginines) led to altered protein structure, reduced lipid binding capability and a reduced ability to catalyze cholesterol efflux from macrophages, partly in a modification-specific manner. The stimulatory effects of apoA-I on the in vivo glucose clearance were negatively affected when apoA-I was modified with methylglyoxal, but not with glycolaldehyde. The in vitro data showed that both glucose uptake in muscle cells and insulin secretion from beta cells were affected. Taken together, glycation modifications impair the apoA-I protein functionality in lipid and glucose metabolism, which is expected to have implications for diabetes patients with poorly controlled blood glucose.
  •  
16.
  • Dwivedi, Om Prakash, et al. (författare)
  • Loss of ZnT8 function protects against diabetes by enhanced insulin secretion
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; , s. 1-22
  • Tidskriftsartikel (refereegranskat)abstract
    • A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived β-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human β cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced KATP channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D.
  •  
17.
  • Edmunds, Shelley J., et al. (författare)
  • A short peptide of the C-terminal class Y helices of apolipoprotein A-I has preserved functions in cholesterol efflux and in vivo metabolic control
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) induces glucose uptake by muscle tissues and stimulates pancreatic insulin secretion, and also facilitates cholesterol transport in circulation, and is explored for anti-diabetic and anti-atherosclerotic treatments. As the better alternative to complex protein–lipid formulations it was recently established that the C-terminal region of the ApoA-I protein singly improves the metabolic control and prevents formation of atherosclerotic plaques. Additional investigations of peptides based on the ApoA-I structure may lead to novel anti-diabetic drugs. We here investigate a short peptide (33mer, RG33) that corresponds to the two last helical segments (aa 209–241) of the ApoA-I structure (so-called class Y-helices which forms amphipathic helices) for stability and solubility in serum, for in vitro cholesterol efflux capability, and for providing in vivo glucose control in an insulin resistant mouse model. The RG33 peptide efficiently solubilizes lipid-vesicles, and promotes the efflux of cholesterol from cultured macrophages. The efflux capacity is significantly increased in the presence of lipids compared to non-lipidated RG33. Finally, acute treatment with the RG33 peptide significantly improves the glucose clearance capacity of insulin resistant mice. The impact of the RG33 peptide on glucose control and cholesterol transport, as well as the physicochemical properties, makes it a good candidate for translational exploration of its therapeutic potential in diabetes treatment.
  •  
18.
  • Edmunds, Shelley J, et al. (författare)
  • ApoAI-derived peptide increases glucose tolerance and prevents formation of atherosclerosis in mice
  • 2019
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 62:7, s. 1257-1267
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Finding new treatment alternatives for individuals with diabetes with severe insulin resistance is highly desired. To identify novel mechanisms that improve glucose uptake in skeletal muscle, independently from insulin levels and signalling, we have explored the therapeutic potential of a short peptide sequence, RG54, derived from apolipoprotein A-I (ApoA-I).METHODS: INS-1E rat clonal beta cells, C2C12 rat muscle myotubes and J774 mouse macrophages were used to study the impact of RG54 peptide on glucose-stimulated insulin secretion, glucose uptake and cholesterol efflux, respectively. GTTs were carried out on diet-induced insulin-resistant and Leprdb diabetic mouse models treated with RG54 peptide, and the impact of RG54 peptide on atherosclerosis was evaluated in Apoe-/- mice. Control mice received ApoA-I protein, liraglutide or NaCl.RESULTS: The synthetic RG54 peptide induced glucose uptake in cultured muscle myotubes by a similar amount as insulin, and also primed pancreatic beta cells for improved glucose-stimulated insulin secretion. The findings were verified in diet-induced insulin-resistant and Leprdb diabetic mice, jointly confirming the physiological effect. The RG54 peptide also efficiently catalysed cholesterol efflux from macrophages and prevented the formation of atherosclerotic plaques in Apoe-/- mice.CONCLUSIONS/INTERPRETATION: The RG54 peptide exhibits good prospects for providing glucose control and reducing the risk of cardiovascular disease in individuals with severe insulin resistance.
  •  
19.
  • Fritzen, Andreas Mæchel, et al. (författare)
  • ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα2
  • 2020
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 35
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Acute administration of the main protein component of high-density lipoprotein, apolipoprotein A-I (ApoA-1), improves glucose uptake in skeletal muscle. The molecular mechanisms mediating this are not known, but in muscle cell cultures, ApoA-1 failed to increase glucose uptake when infected with a dominant-negative AMP-activated protein kinase (AMPK) virus. We therefore investigated whether AMPK is necessary for ApoA-1-stimulated glucose uptake in intact heart and skeletal muscle in vivo. Methods: The effect of injection with recombinant human ApoA-1 (rApoA-1) on glucose tolerance, glucose-stimulated insulin secretion, and glucose uptake into skeletal and heart muscle with and without block of insulin secretion by injection of epinephrine (0.1 mg/kg) and propranolol (5 mg/kg), were investigated in 8 weeks high-fat diet-fed (60E%) wild-type and AMPKα2 kinase-dead mice in the overnight-fasted state. In addition, the effect of rApoA-1 on glucose uptake in isolated skeletal muscle ex vivo was studied. Results: rApoA-1 lowered plasma glucose concentration by 1.7 mmol/l within 3 h (6.1 vs 4.4 mmol/l; p < 0.001). Three hours after rApoA-1 injection, glucose tolerance during a 40-min glucose tolerance test (GTT) was improved compared to control (area under the curve (AUC) reduced by 45%, p < 0.001). This was accompanied by an increased glucose clearance into skeletal (+110%; p < 0.001) and heart muscle (+100%; p < 0.001) and an increase in glucose-stimulated insulin secretion 20 min after glucose injection (+180%; p < 0.001). When insulin secretion was blocked during a GTT, rApoA-1 still enhanced glucose tolerance (AUC lowered by 20% compared to control; p < 0.001) and increased glucose clearance into skeletal (+50%; p < 0.05) and heart muscle (+270%; p < 0.001). These improvements occurred to a similar extent in both wild-type and AMPKα2 kinase-dead mice and thus independently of AMPKα2 activity in skeletal- and heart muscle. Interestingly, rApoA-1 failed to increase glucose uptake in isolated skeletal muscles ex vivo. Conclusions: In conclusion, ApoA-1 stimulates in vivo glucose disposal into skeletal and heart muscle independently of AMPKα2. The observation that ApoA-1 fails to increase glucose uptake in isolated muscle ex vivo suggests that additional systemic effects are required.
  •  
20.
  • Giudice, Rita Del, et al. (författare)
  • Synchrotron radiation circular dichroism spectroscopy reveals structural divergences in HDL-bound apoA-I variants
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein A-I (apoA-I) in high-density lipoprotein (HDL) provides cardiovascular protection. Synchrotron radiation circular dichroism (SRCD) spectroscopy was used to analyze the dynamic solution structure of the apoA-I protein in the apo- and HDL-states and the protein structure conversion in HDL formation. Wild-type apoA-I protein was compared to human variants that either are protective (R173C, Milano) or lead to increased risk for ischaemic heart disease (A164S). Comparable secondary structure distributions in the HDL particles, including significant levels of beta strand/turn, were observed. ApoA-I Milano in HDL displayed larger size heterogeneity, increased protein flexibility, and an altered lipid-binding profile, whereas the apoA-I A164S in HDL showed decrease thermal stability, potentially linking the intrinsic HDL propensities of the variants to disease risk.
  •  
21.
  •  
22.
  • Lagerstedt, Jens, et al. (författare)
  • EPR assessment of protein sites for incorporation of Gd(III) MRI contrast labels.
  • 2013
  • Ingår i: Contrast Media & Molecular Imaging. - : Wiley. - 1555-4317 .- 1555-4309. ; 8:3, s. 252-264
  • Tidskriftsartikel (refereegranskat)abstract
    • We have engineered apolipoprotein A-I (apoA-I), a major protein constituent of high-density lipoprotein (HDL), to contain DOTA-chelated Gd(III) as an MRI contrast agent for the purpose of imaging reconstituted HDL (rHDL) biodistribution, metabolism and regulation in vivo. This protein contrast agent was obtained by attaching the thiol-reactive Gd[MTS-ADO3A] label at Cys residues replaced at four distinct positions (52, 55, 76 and 80) in apoA-I. MRI of infused mice previously showed that the Gd-labeled apoA-I migrates to both the liver and the kidney, the organs responsible for HDL catabolism; however, the contrast properties of apoA-I are superior when the ADO3A moiety is located at position 55, compared with the protein labeled at positions 52, 76 or 80. It is shown here that continuous wave X-band (9 GHz) electron paramagnetic resonance (EPR) spectroscopy is capable of detecting differences in the Gd(III) signal when comparing the labeled protein in the lipid-free with the rHDL state. Furthermore, the values of NMR relaxivity obtained for labeled variants in both the lipid-free and rHDL states correlate to the product of the X-band Gd(III) spectral width and the collision frequency between a nitroxide spin label and a polar relaxation agent. Consistent with its superior relaxivity measured by NMR, the rHDL-associated apoA-I containing the Gd[MTS-ADO3A] probe attached to position 55 displays favorable dynamic and water accessibility properties as determined by X-band EPR. While room temperature EPR requires >1 m m Gd(III)-labeled and only >10 µ m nitroxide-labeled protein to resolve the spectrum, the volume requirement is exceptionally low (~5 µl). Thus, X-band EPR provides a practical assessment for the suitability of imaging candidates containing the site-directed ADO3A contrast probe. Copyright © 2013 John Wiley & Sons, Ltd.
  •  
23.
  •  
24.
  • Lagerstedt, Jens O., 1975, et al. (författare)
  • Electron paramagnetic resonance spectroscopy of site-directed spin labels reveals the structural heterogeneity in the N-terminal domain of apoA-I in solution
  • 2007
  • Ingår i: J Biol Chem. - 0021-9258. ; 282:12, s. 9143-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein A-I (apoA-I) is the major protein constituent of high density lipoprotein (HDL) and plays a central role in phospholipid and cholesterol metabolism. This 243-residue long protein is remarkably flexible and assumes numerous lipid-dependent conformations. Consequently, definitive structural determination of lipid-free apoA-I in solution has been difficult. Using electron paramagnetic spectroscopy of site-directed spin labels in the N-terminal domain of apoA-I (residues 1-98) we have mapped a mixture of secondary structural elements, the composition of which is consistent with findings from other in-solution methods. Based on side chain mobility and their accessibility to polar and non-polar spin relaxers, the precise location of secondary elements for amino acids 14-98 was determined for both lipid-free and lipid-bound apoA-I. Based on intermolecular dipolar coupling at positions 26, 44, and 64, these secondary structural elements were arranged into a tertiary fold to generate a structural model for lipid-free apoA-I in solution.
  •  
25.
  • Lagerstedt, Jens O., 1975, et al. (författare)
  • Mapping the structural transition in an amyloidogenic apolipoprotein A-I
  • 2007
  • Ingår i: Biochemistry. - 0006-2960. ; 46:34, s. 9693-9
  • Tidskriftsartikel (refereegranskat)abstract
    • The single amino acid mutation G26R in human apolipoprotein A-I (apoA-IIOWA) leads to the formation of beta-secondary structure rich amyloid fibrils in vivo. Here we show that full-length apoA-IIOWA has a decreased lipid-binding capability, an increased amino-terminal sensitivity to protease, and a propensity to form annular protofibrils visible by electron microscopy. The molecular basis for the conversion of apolipoprotein A-I to a proamyloidogenic form was examined by electron paramagnetic resonance spectroscopy. Our recent findings [Lagerstedt, J. O., Budamagunta, M. S., Oda, M. N., and Voss, J. C. (2007) J. Biol. Chem. 282, 9143-9149] indicate that Gly26 in the native apoprotein separates a preceding beta-strand structure (residues 20-25) from a downstream largely alpha-helical region. The current study demonstrates that the G26R variant promotes a structural transition of positions 27-56 to a mixture of coil and beta-strand secondary structure. Microscopy and staining by amyloidophilic dyes suggest that this alteration extends throughout the protein within 1 week of incubation in vitro, leading to insoluble aggregates of distinct morphology. The severe consequences of the Iowa mutation likely arise from the combination of losing the contribution of the native Gly residue in terminating beta-strand propagation and the promotion of beta-structure when an Arg is introduced adjacent to the succeeding residue of identical charge and size, Arg27.
  •  
26.
  •  
27.
  • Lagerstedt, Jens O., 1975, et al. (författare)
  • Structural modeling of dual-affinity purified Pho84 phosphate transporter
  • 2004
  • Ingår i: FEBS Lett. - : Wiley. - 0014-5793 .- 1873-3468. ; 578:3, s. 262-8
  • Tidskriftsartikel (refereegranskat)abstract
    • The phosphate transporter Pho84 of Saccharomyces cerevisiae is predicted to contain 12 transmembrane (TM) regions, divided into two partially duplicated parts of 6 TM segments. The three-dimensional (3D) organization of the Pho84 protein has not yet been determined. However, the 3D crystal structure of the Escherichia coli MFS glycerol-3-phosphate/phosphate antiporter, GlpT, and lactose transporter, LacY, has recently been determined. On the basis of extensive prediction and fold recognition analyses (at the MetaServer), GlpT was proposed as the best structural template on which the arrangement of TM segments of the Pho84 transporter was fit, using the comparative structural modeling program MODELLER. To initiate an evaluation of the appropriateness of the Pho84 model, we have performed two direct tests by targeting spin labels to putative TM segments 8 and 12. Electron paramagnetic resonance spectroscopy was then applied on purified and spin labeled Pho84. The line shape from labels located at both positions is consistent with the structural environment predicted by the template-generated model, thus supporting the model.
  •  
28.
  • Lagerstedt, Jens O., 1975, et al. (författare)
  • Structure and function of the GTP binding protein Gtr1 and its role in phosphate transport in Saccharomyces cerevisiae
  • 2005
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 44:2, s. 511-7
  • Tidskriftsartikel (refereegranskat)abstract
    • The Pho84 high-affinity phosphate permease is the primary phosphate transporter in the yeast Saccharomyces cerevisiae under phosphate-limiting conditions. The soluble G protein, Gtr1, has previously been suggested to be involved in the derepressible Pho84 phosphate uptake function. This idea was based on a displayed deletion phenotype of Deltagtr1 similar to the Deltapho84 phenotype. As of yet, the mode of interaction has not been described. The consequences of a deletion of gtr1 on in vivo Pho84 expression, trafficking and activity, and extracellular phosphatase activity were analyzed in strains synthesizing either Pho84-green fluorescent protein or Pho84-myc chimeras. The studies revealed a delayed response in Pho84-mediated phosphate uptake and extracellular phosphatase activity under phosphate-limiting conditions. EPR spectroscopic studies verified that the N-terminal G binding domain (residues 1-185) harbors the nucleotide responsive elements. In contrast, the spectra obtained for the C-terminal part (residues 186-310) displayed no evidence of conformational changes upon GTP addition.
  •  
29.
  • Lagerstedt, Jens, 1975- (författare)
  • Regulatory and Structural Properties of the High-Affinity Phosphate Acquisition System in Saccharomyces cerevisiae
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Inorganic phosphate is an essential nutrient required for the synthesis of many cellular components (e.g., nucleic acids, proteins, lipids and sugars), as well as for meeting metabolic needs (e.g., energy production and translocation). In the case of the unicellular yeast Saccharomyces cerevisiae, the presence of both high- and low-affinity phosphate transporters in the plasma membrane provides for adaptation to environmental variations. Of these systems, the high-affinity Pho84 transport system is the major phosphate transporter activated when the cells have limited access to external phosphate. This integral membrane protein belongs to the major facilitator superfamily (MFS) and possesses 12 predicted transmembrane domains. Activation of this and other proteins (e.g., extracellular phosphatases) involved in maintaining cellular phosphate homeostasis under conditions of limited availability of external phosphate is controlled primarily by transcriptional regulation. However, the presence of proteins indirectly or directly involved in phosphate transport by Pho84, including Gtr1, has been reported. The Gtr1 protein binds guanine nucleotides and probably functions as a molecular switch. The present thesis describes the regulated intracellular trafficking and degradation of Pho84 in response to phosphate, as well as to its non-hydrolysable and non-utilizable analog methylphosphonate. The involvement of the Gtr1 protein in high-affinity phosphate uptake has also been examined. Moreover, in vitro and in silico analyses of structural and functional aspects of both the Pho84 and Gtr1 proteins are presented and discussed.
  •  
30.
  •  
31.
  • Lagerstedt, Jens, et al. (författare)
  • Structure of apolipoprotein A-I's N-terminus on nascent high density lipoprotein.
  • 2011
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 286:4, s. 2966-2975
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and a critical element of cholesterol metabolism. To better elucidate the role of apoA-I structure-function in cholesterol metabolism, the conformation of apoA-I's N-terminus (residues 6-98) on nascent HDL was examined by electron paramagnetic resonance (EPR) spectroscopic analysis. A series of 93 apoA-I variants bearing single nitroxide spin label at positions 6-98 was reconstituted onto 9.6 nm HDL particles (rHDL). These particles were subjected to EPR spectral analysis, measuring regional flexibility and side chain solvent accessibility. Secondary structure was elucidated from side-chain mobility and molecular accessibility, wherein two major α-helical domains were localized to residues 6-34 and 50-98. We identified an unstructured segment (residues 35-39) and a β-strand (residues 40-49) between the two helices. Residues 14, 19, 34, 37, 41 and 58 were examined by EPR on 7.8, 8.4, and 9.6 nm rHDL to assess the effect of particle size on N-terminal structure. Residues 14, 19 and 58 showed no significant rHDL size-dependent spectral or accessibility differences, whereas residues 34, 37, and 41, displayed moderate spectral changes along with substantial rHDL size-dependent differences in molecular accessibility. We have elucidated the secondary structure of the N-terminal domain of apoA-I on 9.6 nm rHDL (residues 6-98) and identified residues in this region that are affected by particle size. We conclude that the inter-helical segment (residues 35-49) plays a role in apoA-I's adaptation to HDL particle size.
  •  
32.
  • Lagerstedt, Jens, et al. (författare)
  • The "beta-clasp" model of apolipoprotein A-I - A lipid-free solution structure determined by electron paramagnetic resonance spectroscopy.
  • 2012
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002. ; 1821:3, s. 448-455
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and plays a central role in cholesterol metabolism. The lipid-free/lipid-poor form of apoA-I is the preferred substrate for the ATP-binding cassette transporter A1 (ABCA1). The interaction of apoA-I with ABCA1 leads to the formation of cholesterol laden high density lipoprotein (HDL) particles, a key step in reverse cholesterol transport and the maintenance of cholesterol homeostasis. Knowledge of the structure of lipid-free apoA-I is essential to understanding its critical interaction with ABCA1 and the molecular mechanisms underlying HDL biogenesis. We therefore examined the structure of lipid-free apoA-I by electron paramagnetic resonance spectroscopy (EPR). Through site directed spin label EPR, we mapped the secondary structure of apoA-I and identified sites of spin coupling as residues 26, 44, 64, 167, 217 and 226. We capitalize on the fact that lipid-free apoA-I self-associates in an anti-parallel manner in solution. We employed these sites of spin coupling to define the central plane in the dimeric apoA-I complex. Applying both the constraints of dipolar coupling with the EPR-derived pattern of solvent accessibility, we assembled the secondary structure into a tertiary context, providing a solution structure for lipid-free apoA-I. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
  •  
33.
  •  
34.
  • Lindahl, Maria, et al. (författare)
  • ApoA-I Milano stimulates lipolysis in adipose cells independently of cAMP/PKA activation.
  • 2015
  • Ingår i: Journal of Lipid Research. - 1539-7262. ; 56:12, s. 2248-2259
  • Tidskriftsartikel (refereegranskat)abstract
    • ApoA-I, the main protein component of high-density lipoprotein (HDL), is suggested to be involved in metabolic homeostasis. We examined the effects of Milano, a naturally occurring ApoA-I variant, about which little mechanistic information is available. Remarkably, high fat-fed mice treated with Milano displayed a rapid weight loss greater than ApoA-I WT treated mice, and a significantly reduced adipose tissue mass, without an inflammatory response. Further, lipolysis in adipose cells isolated from mice treated with either WT or Milano was increased. In primary rat adipose cells, Milano stimulated cholesterol efflux and increased glycerol release, independently of β-adrenergic stimulation and phosphorylation of hormone sensitive lipase (Ser563) and perilipin (Ser522). Stimulation with Milano had a significantly greater effect on glycerol release compared with WT but similar effect on cholesterol efflux. Pharmacological inhibition or siRNA silencing of ABCA-1 did not diminish Milano-stimulated lipolysis, although binding to the cell surface was decreased, as analyzed by fluorescence microscopy. Interestingly, methyl-β-cyclodextrin, a well-described cholesterol acceptor, dose-dependently stimulated lipolysis. Together, these results suggest that decreased fat mass and increased lipolysis following Milano treatment in vivo is partly explained by a novel mechanism at the adipose cell level comprising stimulation of lipolysis independently of the canonical cAMP/PKA signaling pathway.
  •  
35.
  • Lundh, Fredrik, et al. (författare)
  • Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter
  • 2009
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 48:21, s. 4497-4505
  • Tidskriftsartikel (refereegranskat)abstract
    • In Saccharomyces cerevisiae, phosphate uptake is mainly dependent on the proton-coupled Pho84 permease under phosphate-limited growth conditions. Phosphate addition causes Pho84-mediated activation of the protein kinase A (PKA) pathway as well as rapid internalization and vacuolar breakdown of Pho84. We show that Pho84 undergoes phosphate-induced phosphorylation and subsequent ubiquitination on amino acids located in the large middle intracellular loop prior to endocytosis. The attachment of ubiquitin is dependent on the ubiquitin conjugating enzymes Ubc2 and Ubc4. In addition, we show that the Pho84 endocytotic process is delayed in strains with reduced PKA activity. Our results suggest that Pho84-mediated activation of the PKA pathway is responsible for its own downregulation by phosphorylation, ubiquination, internalization, and vacuolar breakdown.
  •  
36.
  • Miskelly, Michael G., et al. (författare)
  • RNA sequencing unravels novel L cell constituents and mechanisms of GLP-1 secretion in human gastric bypass-operated intestine
  • 2024
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 67:2, s. 356-370
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Roux-en-Y gastric bypass surgery (RYGB) frequently results in remission of type 2 diabetes as well as exaggerated secretion of glucagon-like peptide-1 (GLP-1). Here, we assessed RYGB-induced transcriptomic alterations in the small intestine and investigated how they were related to the regulation of GLP-1 production and secretion in vitro and in vivo.Methods: Human jejunal samples taken perisurgically and 1 year post RYGB (n=13) were analysed by RNA-seq. Guided by bioinformatics analysis we targeted four genes involved in cholesterol biosynthesis, which we confirmed to be expressed in human L cells, for potential involvement in GLP-1 regulation using siRNAs in GLUTag and STC-1 cells. Gene expression analyses, GLP-1 secretion measurements, intracellular calcium imaging and RNA-seq were performed in vitro. OGTTs were performed in C57BL/6j and iScd1-/- mice and immunohistochemistry and gene expression analyses were performed ex vivo.Results: Gene Ontology (GO) analysis identified cholesterol biosynthesis as being most affected by RYGB. Silencing or chemical inhibition of stearoyl-CoA desaturase 1 (SCD1), a key enzyme in the synthesis of monounsaturated fatty acids, was found to reduce Gcg expression and secretion of GLP-1 by GLUTag and STC-1 cells. Scd1 knockdown also reduced intracellular Ca2+ signalling and membrane depolarisation. Furthermore, Scd1 mRNA expression was found to be regulated by NEFAs but not glucose. RNA-seq of SCD1 inhibitor-treated GLUTag cells identified altered expression of genes implicated in ATP generation and glycolysis. Finally, gene expression and immunohistochemical analysis of the jejunum of the intestine-specific Scd1 knockout mouse model, iScd1-/-, revealed a twofold higher L cell density and a twofold increase in Gcg mRNA expression.Conclusions/interpretation: RYGB caused robust alterations in the jejunal transcriptome, with genes involved in cholesterol biosynthesis being most affected. Our data highlight SCD as an RYGB-regulated L cell constituent that regulates the production and secretion of GLP-1.
  •  
37.
  • Myers, William K., et al. (författare)
  • Double Electron-Electron Resonance Probes Ca2+-Induced Conformational Changes and Dimerization of Recoverin
  • 2013
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 52:34, s. 5800-5808
  • Tidskriftsartikel (refereegranskat)abstract
    • Recoverin a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, is expressed in retinal photoreceptor cells and serves as a calcium sensor in vision. Ca2+-induced conformational changes in recoverin cause extrusion of its covalently attached myristate (termed Ca2+-myristoyl switch) that promotes translocation of recoverin to disk membranes during phototransduction in retinal rod cells. Here we report double electron electron resonance (DEER) experiments on recoverin that probe Ca2+-induced changes in distance as measured by the dipolar coupling between spin-labels strategically positioned at engineered cysteine residues on the protein surface. The DEER distance between nitroxide spin-labels attached at C39 and N120C is 2.5 +/- 0.1 nm for Ca2+-free recoverin and 3.7 +/- 0.1 nm for Ca2+-bound recoverin. An additional DEER distance (5-6 nm) observed for Ca2+-bound recoverin may represent an intermolecular distance between C39 and N120. N-15 NMR relaxation analysis and CW-EPR experiments both confirm that Ca2+-bound recoverin forms a dimer at protein concentrations above 100 mu M, whereas Ca2+-free recoverin is monomeric We propose that Ca2+-induced dimerization of recoverin at the disk membrane surface may play a role in regulating Ca2+-dependent phosphorylation of dimeric rhodopsin. The DEER approach will be useful for elucidating dimeric structures of NCS proteins in general for which Ca2+-induced dimerization is functionally important but not well understood.
  •  
38.
  • Nagao, Mototsugu, et al. (författare)
  • Secretory granule exocytosis and its amplification by cAMP in pancreatic β-cells
  • 2022
  • Ingår i: Diabetology International. - : Springer Science and Business Media LLC. - 2190-1678 .- 2190-1686. ; 13:3, s. 471-479
  • Forskningsöversikt (refereegranskat)abstract
    • The sequence of events for secreting insulin in response to glucose in pancreatic β-cells is termed “stimulus-secretion coupling”. The core of stimulus-secretion coupling is a process which generates electrical activity in response to glucose uptake and causes Ca2+ oscillation for triggering exocytosis of insulin-containing secretory granules. Prior to exocytosis, the secretory granules are mobilized and docked to the plasma membrane and primed for fusion with the plasma membrane. Together with the final fusion with the plasma membrane, these steps are named the exocytosis process of insulin secretion. The steps involved in the exocytosis process are crucial for insulin release from β-cells and considered indispensable for glucose homeostasis. We recently confirmed a signature of defective exocytosis process in human islets and β-cells of obese donors with type 2 diabetes (T2D). Furthermore, cyclic AMP (cAMP) potentiates glucose-stimulated insulin secretion through mechanisms including accelerating the exocytosis process. In this mini-review, we aimed to organize essential knowledge of the secretory granule exocytosis and its amplification by cAMP. Then, we suggest the fatty acid translocase CD36 as a predisposition in β-cells for causing defective exocytosis, which is considered a pathogenesis of T2D in relation to obesity. Finally, we propose potential therapeutics of the defective exocytosis based on a CD36-neutralizing antibody and on Apolipoprotein A-I (ApoA-I), for improving β-cell function in T2D.
  •  
39.
  • Nilsson, Oktawia, et al. (författare)
  • Apolipoprotein A-I primes beta cells to increase glucose stimulated insulin secretion
  • 2020
  • Ingår i: Biochimica et Biophysica Acta - Molecular Basis of Disease. - : Elsevier BV. - 0925-4439. ; 1866:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The increase of plasma levels of high-density lipoproteins and Apolipoprotein A-I (ApoA-I), its main protein component, has been shown to have a positive action on glucose disposal in type 2 diabetic patients. The current study investigates the unexplored function of ApoA-I to prime beta cells for improved insulin secretion. INS-1E rat clonal beta cells as well as isolated murine islets were used to study the effect of ApoA-I on responsiveness of the beta cells to high glucose challenge. Confocal and transmission electron microscopy were used to dissect ApoA-I mechanisms of action. Chemical endocytosis blockers were used to understand the role of ApoA-I internalization in mediating its positive effect. Pre-incubation of beta cells and isolated murine islets with ApoA-I augmented glucose stimulated insulin secretion. This effect appeared to be due to an increased reservoir of insulin granules at the cell membrane, as confirmed by confocal and transmission electron microscopy. Moreover, ApoA-I induced pancreatic and duodenal homeobox 1 (PDX1) shuttling from the cytoplasm to the nucleus, with the subsequent increase in the proinsulin processing enzyme protein convertase 1 (PC1/3). Finally, the blockade of ApoA-I endocytosis in beta cells resulted in a loss of ApoA-I positive action on insulin secretion. The proposed mechanisms of the phenomenon here described include ApoA-I internalization into beta cells, PDX1 nuclear translocation, and increased levels of proinsulin processing enzymes. Altogether, these events lead to an increased number of insulin granules.
  •  
40.
  • Nilsson, Oktawia, et al. (författare)
  • Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux
  • 2021
  • Ingår i: Journal of Lipid Research. - 0022-2275. ; 62
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein A-I (ApoA-I) of high density lipoproteins (HDLs) is essential for the transportation of cholesterol between peripheral tissues and the liver. However, specific mutations in ApoA-I of HDLs are responsible for a late-onset systemic amyloidosis, the pathological accumulation of protein fibrils in tissues and organs. Carriers of these mutations do not exhibit increased cardiovascular disease risk despite displaying reduced levels of ApoA-I/ HDL cholesterol. To explain this paradox, we show that the HDL particle profiles of patients carrying either L75P or L174S ApoA-I amyloidogenic variants show a higher relative abundance of the 8.4-nm versus 9.6-nm particles and that serum from patients, as well as reconstituted 8.4- and 9.6-nm HDL particles (rHDL), possess increased capacity to catalyze cholesterol efflux from macrophages. Synchrotron radiation circular dichroism and hydrogendeuterium exchange revealed that the variants in 8.4-nm rHDL have altered secondary structure composition and display a more flexible binding to lipids than their native counterpart. The reduced HDL cholesterol levels of patients carrying ApoA-I amyloidogenic variants are thus balanced by higher proportion of small, dense HDL particles, and better cholesterol efflux due to altered, region-specific protein structure dynamics.
  •  
41.
  • Nilsson, Oktawia, et al. (författare)
  • Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux
  • 2021
  • Ingår i: Journal of Lipid Research. - : Elsevier. - 0022-2275 .- 1539-7262. ; 62
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein A-I (ApoA-I) of high density lipoproteins (HDLs) is essential for the transportation of cholesterol between peripheral tissues and the liver. However, specific mutations in ApoA-I of HDLs are responsible for a late-onset systemic amyloidosis, the pathological accumulation of protein fibrils in tissues and organs. Carriers of these mutations do not exhibit increased cardiovascular disease risk despite displaying reduced levels of ApoA-I/HDL cholesterol. To explain this paradox, we show that the HDL particle profiles of patients carrying either L75P or L174S ApoA-I amyloidogenic variants show a higher relative abundance of the 8.4-nm versus 9.6-nm particles and that serum from patients, as well as reconstituted 8.4- and 9.6-nm HDL particles (rHDL), possess increased capacity to catalyze cholesterol efflux from macrophages. Synchrotron radiation circular dichroism and hydrogen-deuterium exchange revealed that the variants in 8.4-nm rHDL have altered secondary structure composition and display a more flexible binding to lipids than their native counterpart. The reduced HDL cholesterol levels of patients carrying ApoA-I amyloidogenic variants are thus balanced by higher proportion of small, dense HDL particles, and better cholesterol efflux due to altered, region-specific protein structure dynamics.
  •  
42.
  • Nygaard, Eva B., et al. (författare)
  • Structural Modeling and Electron Paramagnetic Resonance Spectroscopy of the Human Na+/H+ Exchanger Isoform 1, NHE1
  • 2011
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 286:1, s. 634-648
  • Tidskriftsartikel (refereegranskat)abstract
    • We previously presented evidence that transmembrane domain (TM) IV and TM X-XI are important for inhibitor binding and ion transport by the human Na+/H+ exchanger, hNHE1 (Pedersen, S. F., King, S. A., Nygaard, E. B., Rigor, R. R., and Cala, P. M. (2007) J. Biol. Chem. 282, 19716-19727). Here, we present a structural model of the transmembrane part of hNHE1 that further supports this conclusion. The hNHE1 model was based on the crystal structure of the Escherichia coli Na+/H+ antiporter, NhaA, and previous cysteine scanning accessibility studies of hNHE1 and was validated by EPR spectroscopy of spin labels in TM IV and TM XI, as well as by functional analysis of hNHE1 mutants. Removal of all endogenous cysteines in hNHE1, introduction of the mutations A173C (TM IV) and/or I461C (TM XI), and expression of the constructs in mammalian cells resulted in functional hNHE1 proteins. The distance between these spin labels was similar to 15 A, confirming that TM IV and TM XI are in close proximity. This distance was decreased both at pH 5.1 and in the presence of the NHE1 inhibitor cariporide. A similar TM IV.TM XI distance and a similar change upon a pH shift were found for the cariporide-insensitive Pleuronectes americanus (pa) NHE1; however, in paNHE1, cariporide had no effect on TM IV.TM XI distance. The central role of the TM IV.TM XI arrangement was confirmed by the partial loss of function upon mutation of Arg(425), which the model predicts stabilizes this arrangement. The data are consistent with a role for TM IV and TM XI rearrangements coincident with ion translocation and inhibitor binding by hNHE1.
  •  
43.
  • Oda, Michael N., et al. (författare)
  • The secondary structure of apolipoprotein A-I on 9.6-nm reconstituted high-density lipoprotein determined by EPR spectroscopy
  • 2013
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 280:14, s. 3416-3424
  • Tidskriftsartikel (refereegranskat)abstract
    • ApolipoproteinA-I (ApoA-I) is the major protein component of high-density lipoprotein (HDL), and is critical for maintenance of cholesterol homeostasis. During reverse cholesterol transport, HDL transitions between an array of subclasses, differing in size and composition. This process requires ApoA-I to adapt to changes in the shape of the HDL particle, transiting from an apolipoprotein to a myriad of HDL subclass-specific conformations. Changes in ApoA-I structure cause alterations in HDL-specific enzyme and receptor-binding properties, and thereby direct the HDL particle through the reverse cholesterol transport pathway. In this study, we used site-directed spin label spectroscopy to examine the conformational details of the ApoA-I central domain on HDL. The motional dynamics and accessibility to hydrophobic/hydrophilic relaxation agents of ApoA-I residues99-163 on 9.6-nm reconstituted HDL was analyzed by EPR. In previous analyses, we examined residues6-98 and 164-238 (of ApoA-I's 243 residues), and combining these findings with the current results, we have generated a full-length map of the backbone structure of reconstituted HDL-associated ApoA-I. Remarkably, given that the majority of ApoA-I's length is composed of amphipathic helices, we have identified nonhelical residues, specifically the presence of a -strand (residues149-157). The significance of these nonhelical residues is discussed, along with the other features, in the context of ApoA-I function in contrast to recent models derived by other methods.
  •  
44.
  •  
45.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  • Petrlova, Jitka, et al. (författare)
  • Conformational and aggregation properties of the 1-93 fragment of apolipoprotein A-I
  • 2014
  • Ingår i: Protein Science. - : Wiley. - 1469-896X .- 0961-8368. ; 23:11, s. 71-1559
  • Tidskriftsartikel (refereegranskat)abstract
    • Several disease-linked mutations of apolipoprotein A-I, the major protein in high-density lipoprotein (HDL), are known to be amyloidogenic, and the fibrils often contain N-terminal fragments of the protein. Here, we present a combined computational and experimental study of the fibril-associated disordered 1-93 fragment of this protein, in wild-type and mutated (G26R, S36A, K40L, W50R) forms. In atomic-level Monte Carlo simulations of the free monomer, validated by circular dichroism spectroscopy, we observe changes in the position-dependent β-strand probability induced by mutations. We find that these conformational shifts match well with the effects of these mutations in thioflavin T fluorescence and transmission electron microscopy experiments. Together, our results point to molecular mechanisms that may have a key role in disease-linked aggregation of apolipoprotein A-I.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 66
Typ av publikation
tidskriftsartikel (59)
konferensbidrag (3)
doktorsavhandling (1)
forskningsöversikt (1)
bokkapitel (1)
patent (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (62)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Lagerstedt, Jens (30)
Lagerstedt, Jens O. (27)
Petrlova, Jitka (15)
Persson, Bengt L. (14)
Del Giudice, Rita (10)
Nilsson, Oktawia (9)
visa fler...
Voss, John C. (9)
Domingo-Espín, Joan (8)
Voss, J. C. (6)
Dalla-Riva, Jonathan (6)
Budamagunta, Madhu S ... (6)
Stenkula, Karin (5)
Eliasson, Lena (4)
Lindahl, Maria (4)
Artner, Isabella (3)
Petersson, J. (3)
Stenkula, Karin G. (3)
Pattison, J (3)
Lindvall, Mikaela (3)
Mörgelin, Matthias (2)
Ahlqvist, Emma (2)
Lindqvist, Andreas (2)
Wierup, Nils (2)
Adamska, Iwona (2)
Obici, Laura (2)
Ekström, Simon (2)
Volkov, Petr (2)
Prasad, Rashmi B. (2)
Göransson, Olga (2)
Krus, Ulrika (2)
Hebert, Hans (2)
WEINANDER, R (2)
Grönberg, Caitriona (2)
Roberts, L. M. (2)
Zhu, Lin (2)
Cowan, Elaine (2)
Ngara, Mtakai (2)
Nagao, Mototsugu (2)
Wallin, Stefan (2)
Jones, Helena (2)
Berhe, A (2)
Fristedt, U (2)
Zvyagilskaya, Renata (2)
Pratt, J R (2)
Berden, J (2)
Bouhidel, Karim (2)
Monti, Daria Maria (2)
Rutledge, John C. (2)
Edmunds, Shelley J. (2)
Liébana-García, Rebe ... (2)
visa färre...
Lärosäte
Lunds universitet (44)
Linnéuniversitetet (11)
Göteborgs universitet (8)
Stockholms universitet (8)
Malmö universitet (5)
Karolinska Institutet (4)
visa fler...
Kungliga Tekniska Högskolan (2)
Örebro universitet (2)
Linköpings universitet (2)
Högskolan Kristianstad (1)
Chalmers tekniska högskola (1)
RISE (1)
visa färre...
Språk
Engelska (64)
Odefinierat språk (2)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (39)
Naturvetenskap (22)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy