SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Laguna Fernandez A) "

Sökning: WFRF:(Laguna Fernandez A)

  • Resultat 1-12 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lopez-Vicario, C, et al. (författare)
  • Association of a variant in the gene encoding for ERV1/ChemR23 with reduced inflammation in visceral adipose tissue from morbidly obese individuals
  • 2017
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1, s. 15724-
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity comorbidities are closely associated with chronic low-grade adipose tissue inflammation. A number of SNPs associated with inflammation has been identified, underscoring the impact of genetic determinants on this process. Here, we screened SNPs in genes with pro-inflammatory (IL-1β, IL-6, STAT3 and JAK2), anti-inflammatory (IL-10 and SOCS3) and pro-resolving (ERV1/ChemR23) properties in 101 obese and 99 non-obese individuals. Among the SNPs analyzed, we identified that individuals carrying a C allele in the rs1878022 polymorphism of the ERV1/ChemR23 gene, which encodes for the receptor of the pro-resolving mediator RvE1, had increased ERV1/ChemR23 protein expression and reduced levels of the inflammatory cytokine IL-6 in adipose tissue. Moreover, patients carrying the C allele in homozygosity had lower plasma levels of IL-6, IFN-α2, IL-15, IL-1ra, IL-10, GM-CSF, G-CSF and VEGF and enhanced leukocyte responsiveness to RvE1. C-carriers also exhibited decreased TAG to HDL ratio, a surrogate marker of insulin resistance and a predictor of incident fatty liver. Finally, we confirmed in vivo that the ERV1/ChemR23 receptor regulates systemic and tissue inflammation since mice lacking ERV1/ChemR23 expression showed increased IL-6 levels in adipose tissue and peritoneal macrophages. Together, our study identified an ERV1/ChemR23 variant that protects patients with obesity from excessive inflammatory burden.
  •  
3.
  •  
4.
  •  
5.
  • Artiach, G, et al. (författare)
  • Proteoglycan 4 is Increased in Human Calcified Aortic Valves and Enhances Valvular Interstitial Cell Calcification
  • 2020
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Aortic valve stenosis (AVS), a consequence of increased fibrosis and calcification of the aortic valve leaflets, causes progressive narrowing of the aortic valve. Proteoglycans, structural components of the aortic valve, accumulate in regions with fibrosis and moderate calcification. Particularly, proteoglycan 4 (PRG4) has been identified in fibrotic parts of aortic valves. However, the role of PRG4 in the context of AVS and aortic valve calcification has not yet been determined. Here, transcriptomics, histology, and immunohistochemistry were performed in human aortic valves from patients undergoing aortic valve replacement. Human valve interstitial cells (VICs) were used for calcification experiments and RNA expression analysis. PRG4 was significantly upregulated in thickened and calcified regions of aortic valves compared with healthy regions. In addition, mRNA levels of PRG4 positively associated with mRNA for proteins involved in cardiovascular calcification. Treatment of VICs with recombinant human PRG4 enhanced phosphate-induced calcification and increased the mRNA expression of bone morphogenetic protein 2 and the runt-related transcription factor 2. In summary, PRG4 was upregulated in the development of AVS and promoted VIC osteogenic differentiation and calcification. These results suggest that an altered valve leaflet proteoglycan composition may play a role in the progression of AVS.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-12 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy