SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lamy A) "

Sökning: WFRF:(Lamy A)

  • Resultat 1-50 av 127
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Edgecock, T. R., et al. (författare)
  • High intensity neutrino oscillation facilities in Europe
  • 2013
  • Ingår i: Physical Review Special Topics - Accelerators and Beams. - : American Physical Society. - 1098-4402. ; 16:2, s. 021002-
  • Tidskriftsartikel (refereegranskat)abstract
    • The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He-6 and Ne-18, also stored in a ring. The far detector is also the MEMPHYS detector in the Frejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.
  •  
6.
  • Vandenput, L., et al. (författare)
  • A meta-analysis of previous falls and subsequent fracture risk in cohort studies
  • 2024
  • Ingår i: Osteoporosis International. - : Springer Nature. - 0937-941X .- 1433-2965. ; 35:3, s. 469-494
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary: The relationship between self-reported falls and fracture risk was estimated in an international meta-analysis of individual-level data from 46 prospective cohorts. Previous falls were associated with an increased fracture risk in women and men and should be considered as an additional risk factor in the FRAX® algorithm. Introduction: Previous falls are a well-documented risk factor for subsequent fracture but have not yet been incorporated into the FRAX algorithm. The aim of this study was to evaluate, in an international meta-analysis, the association between previous falls and subsequent fracture risk and its relation to sex, age, duration of follow-up, and bone mineral density (BMD). Methods: The resource comprised 906,359 women and men (66.9% female) from 46 prospective cohorts. Previous falls were uniformly defined as any fall occurring during the previous year in 43 cohorts; the remaining three cohorts had a different question construct. The association between previous falls and fracture risk (any clinical fracture, osteoporotic fracture, major osteoporotic fracture, and hip fracture) was examined using an extension of the Poisson regression model in each cohort and each sex, followed by random-effects meta-analyses of the weighted beta coefficients. Results: Falls in the past year were reported in 21.4% of individuals. During a follow-up of 9,102,207 person-years, 87,352 fractures occurred of which 19,509 were hip fractures. A previous fall was associated with a significantly increased risk of any clinical fracture both in women (hazard ratio (HR) 1.42, 95% confidence interval (CI) 1.33–1.51) and men (HR 1.53, 95% CI 1.41–1.67). The HRs were of similar magnitude for osteoporotic, major osteoporotic fracture, and hip fracture. Sex significantly modified the association between previous fall and fracture risk, with predictive values being higher in men than in women (e.g., for major osteoporotic fracture, HR 1.53 (95% CI 1.27–1.84) in men vs. HR 1.32 (95% CI 1.20–1.45) in women, P for interaction = 0.013). The HRs associated with previous falls decreased with age in women and with duration of follow-up in men and women for most fracture outcomes. There was no evidence of an interaction between falls and BMD for fracture risk. Subsequent risk for a major osteoporotic fracture increased with each additional previous fall in women and men. Conclusions: A previous self-reported fall confers an increased risk of fracture that is largely independent of BMD. Previous falls should be considered as an additional risk factor in future iterations of FRAX to improve fracture risk prediction. 
  •  
7.
  • Kanis, J A, et al. (författare)
  • Previous fracture and subsequent fracture risk: a meta-analysis to update FRAX.
  • 2023
  • Ingår i: Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. - : Springer Nature. - 1433-2965 .- 0937-941X. ; 34:12, s. 2027-2045
  • Tidskriftsartikel (refereegranskat)abstract
    • A large international meta-analysis using primary data from 64 cohorts has quantified the increased risk of fracture associated with a previous history of fracture for future use in FRAX.The aim of this study was to quantify the fracture risk associated with a prior fracture on an international basis and to explore the relationship of this risk with age, sex, time since baseline and bone mineral density (BMD).We studied 665,971 men and 1,438,535 women from 64 cohorts in 32 countries followed for a total of 19.5 million person-years. The effect of a prior history of fracture on the risk of any clinical fracture, any osteoporotic fracture, major osteoporotic fracture, and hip fracture alone was examined using an extended Poisson model in each cohort. Covariates examined were age, sex, BMD, and duration of follow-up. The results of the different studies were merged by using the weighted β-coefficients.A previous fracture history, compared with individuals without a prior fracture, was associated with a significantly increased risk of any clinical fracture (hazard ratio, HR = 1.88; 95% CI = 1.72-2.07). The risk ratio was similar for the outcome of osteoporotic fracture (HR = 1.87; 95% CI = 1.69-2.07), major osteoporotic fracture (HR = 1.83; 95% CI = 1.63-2.06), or for hip fracture (HR = 1.82; 95% CI = 1.62-2.06). There was no significant difference in risk ratio between men and women. Subsequent fracture risk was marginally downward adjusted when account was taken of BMD. Low BMD explained a minority of the risk for any clinical fracture (14%), osteoporotic fracture (17%), and for hip fracture (33%). The risk ratio for all fracture outcomes related to prior fracture decreased significantly with adjustment for age and time since baseline examination.A previous history of fracture confers an increased risk of fracture of substantial importance beyond that explained by BMD. The effect is similar in men and women. Its quantitation on an international basis permits the more accurate use of this risk factor in case finding strategies.
  •  
8.
  • Vandenput, Liesbeth, 1974, et al. (författare)
  • Update of the fracture risk prediction tool FRAX : a systematic review of potential cohorts and analysis plan
  • 2022
  • Ingår i: Osteoporosis International. - : Springer. - 0937-941X .- 1433-2965. ; 33:10, s. 2103-2136
  • Forskningsöversikt (refereegranskat)abstract
    • Summary: We describe the collection of cohorts together with the analysis plan for an update of the fracture risk prediction tool FRAX with respect to current and novel risk factors. The resource comprises 2,138,428 participants with a follow-up of approximately 20 million person-years and 116,117 documented incident major osteoporotic fractures.Introduction: The availability of the fracture risk assessment tool FRAX® has substantially enhanced the targeting of treatment to those at high risk of fracture with FRAX now incorporated into more than 100 clinical osteoporosis guidelines worldwide. The aim of this study is to determine whether the current algorithms can be further optimised with respect to current and novel risk factors.Methods: A computerised literature search was performed in PubMed from inception until May 17, 2019, to identify eligible cohorts for updating the FRAX coefficients. Additionally, we searched the abstracts of conference proceedings of the American Society for Bone and Mineral Research, European Calcified Tissue Society and World Congress of Osteoporosis. Prospective cohort studies with data on baseline clinical risk factors and incident fractures were eligible.Results: Of the 836 records retrieved, 53 were selected for full-text assessment after screening on title and abstract. Twelve cohorts were deemed eligible and of these, 4 novel cohorts were identified. These cohorts, together with 60 previously identified cohorts, will provide the resource for constructing an updated version of FRAX comprising 2,138,428 participants with a follow-up of approximately 20 million person-years and 116,117 documented incident major osteoporotic fractures. For each known and candidate risk factor, multivariate hazard functions for hip fracture, major osteoporotic fracture and death will be tested using extended Poisson regression. Sex- and/or ethnicity-specific differences in the weights of the risk factors will be investigated. After meta-analyses of the cohort-specific beta coefficients for each risk factor, models comprising 10-year probability of hip and major osteoporotic fracture, with or without femoral neck bone mineral density, will be computed.Conclusions: These assembled cohorts and described models will provide the framework for an updated FRAX tool enabling enhanced assessment of fracture risk (PROSPERO (CRD42021227266)).
  •  
9.
  • Vandenput, Liesbeth, et al. (författare)
  • A meta-analysis of previous falls and subsequent fracture risk in cohort studies
  • 2024
  • Ingår i: Osteoporosis International. - : Springer. - 0937-941X .- 1433-2965. ; 35:3, s. 469-494
  • Tidskriftsartikel (refereegranskat)abstract
    • SummaryThe relationship between self-reported falls and fracture risk was estimated in an international meta-analysis of individual-level data from 46 prospective cohorts. Previous falls were associated with an increased fracture risk in women and men and should be considered as an additional risk factor in the FRAX® algorithm.IntroductionPrevious falls are a well-documented risk factor for subsequent fracture but have not yet been incorporated into the FRAX algorithm. The aim of this study was to evaluate, in an international meta-analysis, the association between previous falls and subsequent fracture risk and its relation to sex, age, duration of follow-up, and bone mineral density (BMD).MethodsThe resource comprised 906,359 women and men (66.9% female) from 46 prospective cohorts. Previous falls were uniformly defined as any fall occurring during the previous year in 43 cohorts; the remaining three cohorts had a different question construct. The association between previous falls and fracture risk (any clinical fracture, osteoporotic fracture, major osteoporotic fracture, and hip fracture) was examined using an extension of the Poisson regression model in each cohort and each sex, followed by random-effects meta-analyses of the weighted beta coefficients.ResultsFalls in the past year were reported in 21.4% of individuals. During a follow-up of 9,102,207 person-years, 87,352 fractures occurred of which 19,509 were hip fractures. A previous fall was associated with a significantly increased risk of any clinical fracture both in women (hazard ratio (HR) 1.42, 95% confidence interval (CI) 1.33–1.51) and men (HR 1.53, 95% CI 1.41–1.67). The HRs were of similar magnitude for osteoporotic, major osteoporotic fracture, and hip fracture. Sex significantly modified the association between previous fall and fracture risk, with predictive values being higher in men than in women (e.g., for major osteoporotic fracture, HR 1.53 (95% CI 1.27–1.84) in men vs. HR 1.32 (95% CI 1.20–1.45) in women, P for interaction = 0.013). The HRs associated with previous falls decreased with age in women and with duration of follow-up in men and women for most fracture outcomes. There was no evidence of an interaction between falls and BMD for fracture risk. Subsequent risk for a major osteoporotic fracture increased with each additional previous fall in women and men.ConclusionsA previous self-reported fall confers an increased risk of fracture that is largely independent of BMD. Previous falls should be considered as an additional risk factor in future iterations of FRAX to improve fracture risk prediction.
  •  
10.
  •  
11.
  • Berthomier, M., et al. (författare)
  • Alfven : magnetosphere-ionosphere connection explorers
  • 2012
  • Ingår i: Experimental astronomy. - Dordrecht : Springer. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 445-489
  • Tidskriftsartikel (refereegranskat)abstract
    • The aurorae are dynamic, luminous displays that grace the night skies of Earth's high latitude regions. The solar wind emanating from the Sun is their ultimate energy source, but the chain of plasma physical processes leading to auroral displays is complex. The special conditions at the interface between the solar wind-driven magnetosphere and the ionospheric environment at the top of Earth's atmosphere play a central role. In this Auroral Acceleration Region (AAR) persistent electric fields directed along the magnetic field accelerate magnetospheric electrons to the high energies needed to excite luminosity when they hit the atmosphere. The "ideal magnetohydrodynamics" description of space plasmas which is useful in much of the magnetosphere cannot be used to understand the AAR. The AAR has been studied by a small number of single spacecraft missions which revealed an environment rich in wave-particle interactions, plasma turbulence, and nonlinear acceleration processes, acting on a variety of spatio-temporal scales. The pioneering 4-spacecraft Cluster magnetospheric research mission is now fortuitously visiting the AAR, but its particle instruments are too slow to allow resolve many of the key plasma physics phenomena. The Alfv,n concept is designed specifically to take the next step in studying the aurora, by making the crucial high-time resolution, multi-scale measurements in the AAR, needed to address the key science questions of auroral plasma physics. The new knowledge that the mission will produce will find application in studies of the Sun, the processes that accelerate the solar wind and that produce aurora on other planets.
  •  
12.
  • Grun, E., et al. (författare)
  • The 2016 Feb 19 outburst of comet 67P/CG : an ESA Rosetta multi-instrument study
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S220-S234
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2016 Feb 19, nine Rosetta instruments serendipitously observed an outburst of gas and dust from the nucleus of comet 67P/Churyumov-Gerasimenko. Among these instruments were cameras and spectrometers ranging from UV over visible to microwave wavelengths, in situ gas, dust and plasma instruments, and one dust collector. At 09: 40 a dust cloud developed at the edge of an image in the shadowed region of the nucleus. Over the next two hours the instruments recorded a signature of the outburst that significantly exceeded the background. The enhancement ranged from 50 per cent of the neutral gas density at Rosetta to factors > 100 of the brightness of the coma near the nucleus. Dust related phenomena (dust counts or brightness due to illuminated dust) showed the strongest enhancements (factors > 10). However, even the electron density at Rosetta increased by a factor 3 and consequently the spacecraft potential changed from similar to-16 V to -20 V during the outburst. A clear sequence of events was observed at the distance of Rosetta ( 34 km from the nucleus): within 15 min the Star Tracker camera detected fast particles (similar to 25 m s(-1)) while 100 mu m radius particles were detected by the GIADA dust instrument similar to 1 h later at a speed of 6 m s(-1). The slowest were individual mm to cm sized grains observed by the OSIRIS cameras. Although the outburst originated just outside the FOV of the instruments, the source region and the magnitude of the outburst could be determined.
  •  
13.
  •  
14.
  • Maksimovic, M., et al. (författare)
  • First observations and performance of the RPW instrument on board the Solar Orbiter mission
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is designed to measure in situ magnetic and electric fields and waves from the continuum up to several hundred kHz. The RPW also observes solar and heliospheric radio emissions up to 16 MHz. It was switched on and its antennae were successfully deployed two days after the launch of Solar Orbiter on February 10, 2020. Since then, the instrument has acquired enough data to make it possible to assess its performance and the electromagnetic disturbances it experiences. In this article, we assess its scientific performance and present the first RPW observations. In particular, we focus on a statistical analysis of the first observations of interplanetary dust by the instrument's Thermal Noise Receiver. We also review the electro-magnetic disturbances that RPW suffers, especially those which potential users of the instrument data should be aware of before starting their research work.
  •  
15.
  • Fulle, M., et al. (författare)
  • Evolution Of The Dust Size Distribution Of Comet 67P/Churyumov-Gerasimenko From 2.2 Au To Perihelion
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 821:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta probe, orbiting Jupiter-family comet 67P/Churyumov-Gerasimenko, has been detecting individual dust particles of mass larger than 10(-10) kg by means of the GIADA dust collector and the OSIRIS Wide Angle Camera and Narrow Angle Camera since 2014 August and will continue until 2016 September. Detections of single dust particles allow us to estimate the anisotropic dust flux from 67P, infer the dust loss rate and size distribution at the surface of the sunlit nucleus, and see whether the dust size distribution of 67P evolves in time. The velocity of the Rosetta orbiter, relative to 67P, is much lower than the dust velocity measured by GIADA, thus dust counts when GIADA is nadir-pointing will directly provide the dust flux. In OSIRIS observations, the dust flux is derived from the measurement of the dust space density close to the spacecraft. Under the assumption of radial expansion of the dust, observations in the nadir direction provide the distance of the particles by measuring their trail length, with a parallax baseline determined by the motion of the spacecraft. The dust size distribution at sizes > 1 mm observed by OSIRIS is consistent with a differential power index of -4, which was derived from models of 67P's trail. At sizes <1 mm, the size distribution observed by GIADA shows a strong time evolution, with a differential power index drifting from -2 beyond 2 au to -3.7 at perihelion, in agreement with the evolution derived from coma and tail models based on ground-based data. The refractory-to-water mass ratio of the nucleus is close to six during the entire inbound orbit and at perihelion.
  •  
16.
  • Idelevich, E. A., et al. (författare)
  • Microbiological diagnostics of bloodstream infections in Europe-an ESGBIES survey
  • 2019
  • Ingår i: Clinical Microbiology and Infection. - : Elsevier. - 1198-743X .- 1469-0691. ; 25:11, s. 1399-1407
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: High-quality diagnosis of bloodstream infections (BSI) is important for successful patient management. As knowledge on current practices of microbiological BSI diagnostics is limited, this project aimed to assess its current state in European microbiological laboratories.Methods: We performed an online questionnaire-based cross-sectional survey comprising 34 questions on practices of microbiological BSI diagnostics. The ESCMID Study Group for Bloodstream Infections, Endocarditis and Sepsis (ESGBIES) was the primary platform to engage national coordinators who recruited laboratories within their countries.Results: Responses were received from 209 laboratories in 25 European countries. Although 32.5% (68/209) of laboratories only used the classical processing of positive blood cultures (BC), two-thirds applied rapid technologies. Of laboratories that provided data, 42.2% (78/185) were able to start incubating BC in automated BC incubators around-the-clock, and only 13% (25/192) had established a 24-h service to start immediate processing of positive BC. Only 4.7% (9/190) of laboratories validated and transmitted the results of identification and antimicrobial susceptibility testing (AST) of BC pathogens to clinicians 24 h/day. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry from briefly incubated sub-cultures on solid media was the most commonly used approach to rapid pathogen identification from positive BC, and direct disc diffusion was the most common rapid AST method from positive BC.Conclusions: Laboratories have started to implement novel technologies for rapid identification and AST for positive BC. However, progress is severely compromised by limited operating hours such that current practice of BC diagnostics in Europe complies only partly with the requirements for optimal BSI management.
  •  
17.
  • Maksimovic, M., et al. (författare)
  • The Solar Orbiter Radio and Plasma Waves (RPW) instrument
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is described in this paper. This instrument is designed to measure in-situ magnetic and electric fields and waves from the continuous to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements since it is essential to answer three of the four mission overarching science objectives. In addition RPW will exchange on-board data with the other in-situ instruments in order to process algorithms for interplanetary shocks and type III langmuir waves detections.
  •  
18.
  •  
19.
  • Barucci, M. A., et al. (författare)
  • Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko as observed by Rosetta OSIRIS and VIRTIS instruments
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet's nucleus. Aims. The aim of this work is to search for the presence of H2O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for H2O ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS. Methods. The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination conditions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotometrically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 mu m absorption band of water ice in the VIRTIS spectral cubes. Results. Out of the 13 selected bright spots, eight of them present positive H2O ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The H2O ice content was confirmed by modeling the spectra with mixing (areal and intimate) of H2O ice and dark terrain, using Hapke's radiative transfer modeling. We also present a detailed analysis of the detected spots.
  •  
20.
  • El-Maarry, M. R., et al. (författare)
  • Fractures on comet 67P/Churyumov-Gerasimenko observed by Rosetta/OSIRIS
  • 2015
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:13, s. 5170-5178
  • Tidskriftsartikel (refereegranskat)abstract
    • The Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) experiment onboard the Rosetta spacecraft currently orbiting comet 67P/Churyumov-Gerasimenko has yielded unprecedented views of a comet's nucleus. We present here the first ever observations of meter-scale fractures on the surface of a comet. Some of these fractures form polygonal networks. We present an initial assessment of their morphology, topology, and regional distribution. Fractures are ubiquitous on the surface of the comet's nucleus. Furthermore, they occur in various settings and show different topologies suggesting numerous formation mechanisms, which include thermal insulation weathering, orbital-induced stresses, and possibly seasonal thermal contraction. However, we conclude that thermal insolation weathering is responsible for creating most of the observed fractures based on their morphology and setting in addition to thermal models that indicate diurnal temperature ranges exceeding 200K and thermal gradients of similar to 15K/min at perihelion are possible. Finally, we suggest that fractures could be a facilitator in surface evolution and long-term erosion.
  •  
21.
  • El-Maarry, M. R., et al. (författare)
  • Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The OSIRIS camera onboard the Rosetta spacecraft has been acquiring images of the comet 67P/Churyumov-Gerasimenko (67P)'s nucleus at spatial resolutions down to similar to 0.17 m/px ever since Aug. 2014. These images have yielded unprecedented insight into the morphological diversity of the comet's surface. This paper presents an overview of the regional morphology of comet 67P. Methods. We used the images that were acquired at orbits similar to 20-30 km from the center of the comet to distinguish different regions on the surface and introduce the basic regional nomenclature adopted by all papers in this Rosetta special feature that address the comet's morphology and surface processes. We used anaglyphs to detect subtle regional and topographical boundaries and images from close orbit (similar to 10 km from the comet's center) to investigate the fine texture of the surface. Results. Nineteen regions have currently been defined on the nucleus based on morphological and/or structural boundaries, and they can be grouped into distinctive region types. Consolidated, fractured regions are the most common region type. Some of these regions enclose smooth units that appear to settle in gravitational sinks or topographically low areas. Both comet lobes have a significant portion of their surface covered by a dusty coating that appears to be recently placed and shows signs of mobilization by aeolian-like processes. The dusty coatings cover most of the regions on the surface but are notably absent from a couple of irregular large depressions that show sharp contacts with their surroundings and talus-like deposits in their interiors, which suggests that short-term explosive activity may play a significant role in shaping the comet's surface in addition to long-term sublimation loss. Finally, the presence of layered brittle units showing signs of mechanical failure predominantly in one of the comet's lobes can indicate a compositional heterogeneity between the two lobes.
  •  
22.
  • El-Marry, M. R., et al. (författare)
  • Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images : The southern hemisphere
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 593
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The OSIRIS camera on board the Rosetta spacecraft has been acquiring images of the comet 67P/Churyumov-Gerasimenko (67P)'s nucleus since August 2014. Starting in May 2015, the southern hemisphere gradually became illuminated and was imaged for the first time. Here we present the regional morphology of the southern hemisphere, which serves as a companion to an earlier paper that presented the regional morphology of the northern hemisphere. Methods. We used OSIRIS images that were acquired at orbits similar to 45-125 km from the center of the comet (corresponding to spatial resolutions of similar to 0.8 to 2.3 m/pixel) coupled with the use of digital terrain models to define the different regions on the surface, and identify structural boundaries accurately. Results. Seven regions have been defined in the southern hemisphere bringing the total number of defined regions on the surface of the nucleus to 26. These classifications are mainly based on morphological and/or topographic boundaries. The southern hemisphere shows a remarkable dichotomy with its northern counterpart mainly because of the absence of wide-scale smooth terrains, dust coatings and large unambiguous depressions. As a result, the southern hemisphere closely resembles previously identified consolidated regions. An assessment of the overall morphology of comet 67P suggests that the comet's two lobes show surface heterogeneities manifested in different physical/mechanical characteristics, possibly extending to local (i.e., within a single region) scales.
  •  
23.
  • Lara, L. M., et al. (författare)
  • Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. During the most recent perihelion passage in 2009 of comet 67P/Churyumov-Gerasimenko (67P), ground-based observations showed an anisotropic dust coma where jet-like features were detected at similar to 1.3 AU from the Sun. The current perihelion passage is exceptional as the Rosetta spacecraft is monitoring the nucleus activity since March 2014, when a clear dust coma was already surrounding the nucleus at 4.3 AU from the Sun. Subsequently, the OSIRIS camera also witnessed an outburst in activity between April 27 and 30, and since mid-July, the dust coma at rh similar to 3.7-3.6 AU preperihelion is clearly non-isotropic, pointing to the existence of dust jet-like features. Aims. We aim to ascertain on the nucleus surface the origin of the dust jet-like features detected as early as in mid-July 2014. This will help to establish how the localized comet nucleus activity compares with that seen in previous apparitions and will also help following its evolution as the comet approaches its perihelion, at which phase most of the jets were detected from ground-based observations. Determining these areas also allows locating them in regions on the nucleus with spectroscopic or geomorphological distinct characteristics. Methods. Three series of dust images of comet 67P obtained with the Wide Angle Camera (WAC) of the OSIRIS instrument onboard the Rosetta spacecraft were processed with different enhancement techniques. This was made to clearly show the existence of jet-like features in the dust coma, whose appearance toward the observer changed as a result of the rotation of the comet nucleus and of the changing observing geometry from the spacecraft. The position angles of these features in the coma together with information on the observing geometry, nucleus shape, and rotation, allowed us to determine the most likely locations on the nucleus surface where the jets originate from. Results. Geometrical tracing of jet sources indicates that the activity of the nucleus of 67P gave rise during July and August 2014 to large-scale jet-like features from the Hapi, Hathor, Anuket, and Aten regions, confirming that active regions may be present on the nucleus localized at 60. northern latitude as deduced from previous comet apparitions. There are also hints that large-scale jets observed from the ground are possibly composed, at their place of origin on the nucleus surface, of numerous small-scale features.
  •  
24.
  • Oklay, N., et al. (författare)
  • Long-term survival of surface water ice on comet 67P
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469, s. S582-S597
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous water-ice-rich deposits surviving more than several months on comet 67P/Churyumov-Gerasimenko were observed during the Rosetta mission. We announce the first-time detection of water-ice features surviving up to 2 yr since their first observation via OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) NAC (narrow angle camera). Their existence on the nucleus of comet 67P at the arrival of the Rosetta spacecraft suggests that they were exposed to the surface during the comet's previous orbit. We investigated the temporal variation of large water-ice patches to understand the long-term sustainability of water ice on cometary nuclei on time-scales of months and years. Large clusters are stable over typical periods of 0.5 yr and reduce their size significantly around the comet's perihelion passage, while small exposures disappear. We characterized the temporal variation of their multispectral signatures. In large clusters, dust jets were detected, whereas in large isolated ones no associated activity was detected. Our thermal analysis shows that the long-term sustainability of water-ice-rich features can be explained by the scarce energy input available at their locations over the first half year. However, the situation reverses for the period lasting several months around perihelion passage. Our two end-member mixing analysis estimates a pure water-ice equivalent thickness up to 15 cm within one isolated patch, and up to 2 m for the one still observable through the end of the mission. Our spectral modelling estimates up to 48 per cent water-ice content for one of the large isolated feature, and up to 25 per cent water ice on the large boulders located within clusters.
  •  
25.
  • Pajola, M., et al. (författare)
  • The Agilkia boulders/pebbles size-frequency distributions : OSIRIS and ROLIS joint observations of 67P surface
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S242-S252
  • Tidskriftsartikel (refereegranskat)abstract
    • By using the images acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) and ROLIS (ROsetta Lander Imaging System) cameras, we derive the size-frequency distribution (SFD) of cometary pebbles and boulders covering the size range 0.05-30.0 m on the Agilkia landing site. The global SFD measured on OSIRIS images, reflects the different properties of the multiple morphological units present on Agilkia, combined with selection effects related to lifting, transport and redeposition. Contrarily, the different ROLIS SFD derived on the smooth and rough units may be related to their different regolith thickness present on Agilkia. In the thicker, smoother layer, ROLIS mainly measures the SFD of the airfall population which almost completely obliterates the signature of underlying boulders up to a size of the order of 1 m. This is well matched by the power-law index derived analysing coma particles identified by the grain analyser Grain Impact Analyser and Dust Accumulator. This result confirms the important blanketing dynamism of Agilkia. The steeper SFD observed in rough terrains from 0.4 to 2 m could point out intrinsic differences between northern and southern dust size distributions, or it may suggest that the underlying boulders 'peek through' the thinner airfall layer in the rough terrain, thereby producing the observed excess in the decimetre size range. Eventually, the OSIRIS SFD performed on the Philae landing unit may be due to water sublimation from a static population of boulders, affecting smaller boulders before the bigger ones, thus shallowing the original SFD.
  •  
26.
  • Pommerol, A., et al. (författare)
  • OSIRIS observations of meter-sized exposures of H2O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Since OSIRIS started acquiring high-resolution observations of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, over one hundred meter-sized bright spots have been identified in numerous types of geomorphologic regions, but mostly located in areas receiving low insolation. The bright spots are either clustered, in debris fields close to decameter-high cliffs, or isolated without structural relation to the surrounding terrain. They can be up to ten times brighter than the average surface of the comet at visible wavelengths and display a significantly bluer spectrum. They do not exhibit significant changes over a period of a few weeks. All these observations are consistent with exposure of water ice at the surface of boulders produced by dislocation of the weakly consolidated layers that cover large areas of the nucleus. Laboratory experiments show that under simulated comet surface conditions, analog samples acquire a vertical stratification with an uppermost porous mantle of refractory dust overlaying a layer of hard ice formed by recondensation or sintering under the insulating dust mantle. The evolution of the visible spectrophotometric properties of samples during sublimation is consistent with the contrasts of brightness and color seen at the surface of the nucleus. Clustered bright spots are formed by the collapse of overhangs that is triggered by mass wasting of deeper layers. Isolated spots might be the result of the emission of boulders at low velocity that are redepositioned in other regions.
  •  
27.
  • Auger, A. -T, et al. (författare)
  • Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Since August 2014, the OSIRIS Narrow Angle Camera (NAC) onboard the Rosetta spacecraft has acquired high spatial resolution images of the nucleus of comet 67P/Churyumov-Gerasimenko, down to the decimeter scale. This paper focuses on the Imhotep region, located on the largest lobe of the nucleus, near the equator. Aims. We map, inventory, and describe the geomorphology of the Imhotep region. We propose and discuss some processes to explain the formation and ongoing evolution of this region. Methods. We used OSIRIS NAC images, gravitational heights and slopes, and digital terrain models to map and measure the morphologies of Imhotep. Results. The Imhotep region presents a wide variety of terrains and morphologies: smooth and rocky terrains, bright areas, linear features, roundish features, and boulders. Gravity processes such as mass wasting and collapse play a significant role in the geomorphological evolution of this region. Cometary processes initiate erosion and are responsible for the formation of degassing conduits that are revealed by elevated roundish features on the surface. We also propose a scenario for the formation and evolution of the Imhotep region; this implies the presence of large primordial voids inside the nucleus, resulting from its formation process.
  •  
28.
  • Bertini, I., et al. (författare)
  • The scattering phase function of comet 67P/Churyumov-Gerasimenko coma as seen from the Rosetta/OSIRIS instrument
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S404-S415
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of dust, the most abundant material in cometary nuclei, is pivotal in understanding the original materials forming the Solar system. Measuring the coma phase function provides a tool to investigate the nature of cometary dust. Rosetta/OSIRIS sampled the coma phase function of comet 67P/Churyumov-Gerasimenko, covering a large phase angle range in a small amount of time. Twelve series were acquired in the period from 2015 March to 2016 February for this scientific purpose. These data allowed, after stray light removal, measuring the phase function shape, its reddening, and phase reddening while varying heliocentric and nucleocentric distances. Despite small dissimilarities within different series, we found a constant overall shape. The reflectance has a u-shape with minimum at intermediate phase angles, reaching similar values at the smallest and largest phase angle sampled. The comparison with cometary phase functions in literature indicates OSIRIS curves being consistent with the ones found in many other single comets. The dust has a negligible phase reddening at alpha < 90 degrees, indicating a coma dominated by single scattering. We measured a reddening of [11-14] %/100 nm between 376 and 744 nm. No trend with heliocentric or nucleocentric distance was found, indicating the coma doesn't change its spectrum with time. These results are consistent with single coma grains and close-nucleus coma photometric results. Comparison with nucleus photometry indicates a different backscattering phase function shape and similar reddening values only at alpha < 30 degrees. At larger phase angles, the nucleus becomes significantly redder than the coma.
  •  
29.
  •  
30.
  • Deshapriya, J. D. P., et al. (författare)
  • Spectrophotometry of the Khonsu region on the comet 67P/Churyumov-Gerasimenko using OSIRIS instrument images
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S274-S286
  • Tidskriftsartikel (refereegranskat)abstract
    • Our work focuses on the spectrophotometric analysis of selected terrain and bright patches in the Khonsu region on the comet 67P/Churyumov-Gerasimenko. Despite the variety of geological features, their spectrophotometric properties appear to indicate a similar composition. It is noticeable that the smooth areas in Khonsu possess similar spectrophotometric behaviour to some other regions of the comet. We observed bright patches on Khonsu with an estimation of >40 per cent of normal albedo and suggest that they are associated with H2O ice. One of the studied bright patches has been observed to exist on the surface for more than 5 months without a major decay of its size, implying the existence of potential sub-surface icy layers. Its location may be correlated with a cometary outburst during the perihelion passage of the comet in 2015 August, and we interpret it to have triggered the surface modifications necessary to unearth the stratified icy layers beneath the surface. A boulder analysis on Khonsu leads to a power-law index of -3.1 + 0.2/-0.3 suggesting a boulder formation, shaped by varying geological processes for different morphological units.
  •  
31.
  • El-Maarry, M. Ramy, et al. (författare)
  • Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past
  • 2017
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 355:6332, s. 1392-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta spacecraft spent similar to 2 years orbiting comet 67P/Churyumov-Gerasimenko, most of it at distances that allowed surface characterization and monitoring at submeter scales. From December 2014 to June 2016, numerous localized changes were observed, which we attribute to cometary-specific weathering, erosion, and transient events driven by exposure to sunlight and other processes. While the localized changes suggest compositional or physical heterogeneity, their scale has not resulted in substantial alterations to the comet's landscape. This suggests that most of the major landforms were created early in the comet's current orbital configuration. They may even date from earlier if the comet had a larger volatile inventory, particularly of CO or CO2 ices, or contained amorphous ice, which could have triggered activity at greater distances from the Sun.
  •  
32.
  • Feller, C., et al. (författare)
  • Decimetre-scaled spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S287-S303
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of the photometric and spectrophotometric properties of the 67P/Churyumov-Gerasimenko nucleus derived with the Optical, Spectroscopic and Infrared Remote Imaging System instrument during the closest fly-by over the comet, which took place on 2015 February 14 at a distance of similar to 6 km from the surface. Several images covering the 0 degrees-33 degrees. phase angle range were acquired, and the spatial resolution achieved was 11 cm pixel(-1). The flown-by region is located on the big lobe of the comet, near the borders of the Ash, Apis and Imhotep regions. Our analysis shows that this region features local heterogeneities at the decimetre scale. We observed difference of reflectance up to 40 per cent between bright spots and sombre regions, and spectral slope variations up to 50 per cent. The spectral reddening effect observed globally on the comet surface by Fornasier et al. (2015) is also observed locally on this region, but with a less steep behaviour. We note that numerous metre-sized boulders, which exhibit a smaller opposition effect, also appear spectrally redder than their surroundings. In this region, we found no evidence linking observed bright spots to exposed water-ice-rich material. We fitted our data set using the Hapke 2008 photometric model. The region overflown is globally as dark as the whole nucleus (geometric albedo of 6.8 per cent) and it has a high porosity value in the uppermost layers (86 per cent). These results of the photometric analysis at a decimetre scale indicate that the photometric properties of the flown-by region are similar to those previously found for the whole nucleus.
  •  
33.
  • Frattin, E., et al. (författare)
  • Post-perihelion photometry of dust grains in the coma of 67P Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 469, s. S195-S203
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a photometric analysis of individual dust grains in the coma of comet 67P/Churyumov-Gerasimenko using OSIRIS images taken from 2015 July to 2016 January. We analysed a sample of 555 taken during 18 d at heliocentric distances ranging between 1.25 and 2.04 au and at nucleocentric distances between 80 and 437 km. An automated method to detect the tracks was specifically developed. The images were taken by OSIRIS NAC in four different filters: Near-IR (882 nm), Orange (649 nm), FarOrange (649 nm) and Blue (480 nm). It was not always possible to recognize all the grains in the four filters, hence we measured the spectral slope in two wavelengths ranges: in the interval [480-649] nm, for 1179 grains, and in the interval [649-882] nm, for 746 grains. We studied the evolution of the two populations' average spectral slopes. The data result scattered around the average value in the range [480-649] nm, while in the [649-882] nm we observe a slight decreasing moving away from the Sun as well as a slight increasing with the nucleocentric distance. A spectrophotometric analysis was performed on a subsample of 339 grains. Three major groups were defined, based on the spectral slope between [535-882] nm: (i) the steep spectra that may be related with organic material, (ii) the spectra with an intermediate slope, likely a mixture of silicates and organics and (iii) flat spectra that may be associated with a high abundance of water ice.
  •  
34.
  • Fulle, Marco, et al. (författare)
  • The phase function and density of the dust observed at comet 67P/Churyumov-Gerasimenko
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 476:2, s. 2835-2839
  • Tidskriftsartikel (refereegranskat)abstract
    • The OSIRIS camera onboard Rosetta measured the phase function of both the coma dust and the nucleus. The two functions have a very different slope versus the phase angle. Here, we show that the nucleus phase function should be adopted to convert the brightness to the size of dust particles larger than 2.5 mm only. This makes the dust bursts observed close to Rosetta by OSIRIS, occurring about every hour, consistent with the fragmentation on impact with Rosetta of parent particles, whose flux agrees with the dust flux observed by GIADA. OSIRIS also measured the antisunward acceleration of the fragments, thus providing the first direct measurement of the solar radiation force acting on the dust fragments and thus of their bulk density, excluding any measurable rocket effect by the ice sublimation from the dust. The obtained particle density distribution has a peak matching the bulk density of most COSIMA particles, and represents a subset of the density distribution measured by GIADA. This implies a bias in the elemental abundances measured by COSIMA, which thus are consistent with the 67P dust mass fractions inferred by GIADA, i.e. (38 +/- 8) per cent of hydrocarbons versus the (62 +/- 8) per cent of sulphides and silicates.
  •  
35.
  • Giacomini, L., et al. (författare)
  • Geologic mapping of the Comet 67P/Churyumov-Gerasimenko's Northern hemisphere
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S352-S369
  • Tidskriftsartikel (refereegranskat)abstract
    • The Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS), the scientific imaging system onboard the Rosetta mission, has been acquiring images of the nucleus of the comet 67P/Churyumov-Gerasimenko since 2014 August with a resolution which allows a detailed analysis of its surface. Indeed, data reveal a complex surface morphology which is likely the expression of different processes which occurred at different times on the cometary nucleus. In order to characterize these different morphologies and better understand their distribution, we performed a geologic mapping of comet's 67P Northern hemisphere in which features have been distinguished based on their morphological, textural and stratigraphic characteristics. For this purpose, we used narrow-angle camera images acquired in 2014 August and September with a spatial scale ranging from 1.2 to 2.4 m pixel(-1). Several different geologic units have been identified on the basis of their different surface textures, granulometry and morphology. Some of these units are distinctive and localized, whereas others are more common and distributed all over the Northern hemisphere. Moreover, different types of linear features have been distinguished on the basis of their morphology. Some of these lineaments have never been observed before on a comet and can offer important clues on the internal structures of the nucleus itself. The geologic mapping results presented here will allow us to better understand the processes which affected the nucleus' surface and thus the origin and evolutionary history of comet 67P/Churyumov-Gerasimenko.
  •  
36.
  • Gicquel, A., et al. (författare)
  • Sublimation of icy aggregates in the coma of comet 67P/Churyumov-Gerasimenko detected with the OSIRIS cameras on board Rosetta
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 462, s. S57-S66
  • Tidskriftsartikel (refereegranskat)abstract
    • Beginning in 2014 March, the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) cameras began capturing images of the nucleus and coma (gas and dust) of comet 67P/Churyumov-Gerasimenko using both the wide angle camera (WAC) and the narrow angle camera (NAC). The many observations taken since July of 2014 have been used to study the morphology, location, and temporal variation of the comet's dust jets. We analysed the dust monitoring observations shortly after the southern vernal equinox on 2015 May 30 and 31 with the WAC at the heliocentric distance R-h = 1.53 AU, where it is possible to observe that the jet rotates with the nucleus. We found that the decline of brightness as a function of the distance of the jet is much steeper than the background coma, which is a first indication of sublimation. We adapted a model of sublimation of icy aggregates and studied the effect as a function of the physical properties of the aggregates (composition and size). The major finding of this paper was that through the sublimation of the aggregates of dirty grains (radius a between 5 and 50 mu m) we were able to completely reproduce the radial brightness profile of a jet beyond 4 km from the nucleus. To reproduce the data, we needed to inject a number of aggregates between 8.5 x 10(13) and 8.5 x 10(10) for a = 5 and 50 mu m, respectively, or an initial mass of H2O ice around 22 kg.
  •  
37.
  • Groussin, O., et al. (författare)
  • Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov-Gerasimenko and provide constraints on the mechanical properties of the cometary material (tensile, shear, and compressive strengths). Methods. We computed the gravitational slopes for five regions on the nucleus that are representative of the different morphologies observed on the surface (Imhotep, Ash, Seth, Hathor, and Agilkia), using two shape models computed from OSIRIS images by the stereo-photoclinometry (SPC) and stereo-photogrammetry (SPG) techniques. We estimated the tensile, shear, and compressive strengths using different surface morphologies (overhangs, collapsed structures, boulders, cliffs, and Philae's footprint) and mechanical considerations. Results. The different regions show a similar general pattern in terms of the relation between gravitational slopes and terrain morphology: i) low-slope terrains (0-20 degrees) are covered by a fine material and contain a few large (>10 m) and isolated boulders; ii) intermediate-slope terrains (20-45 degrees) are mainly fallen consolidated materials and debris fields, with numerous intermediate-size boulders from <1m to 10m for the majority of them; and iii) high-slope terrains (45-90 degrees) are cliffs that expose a consolidated material and do not show boulders or fine materials. The best range for the tensile strength of overhangs is 3-15 Pa (upper limit of 150 Pa), 4-30 Pa for the shear strength of fine surface materials and boulders, and 30-150 Pa for the compressive strength of overhangs (upper limit of 1500 Pa). The strength-to-gravity ratio is similar for 67P and weak rocks on Earth. As a result of the low compressive strength, the interior of the nucleus may have been compressed sufficiently to initiate diagenesis, which could have contributed to the formation of layers. Our value for the tensile strength is comparable to that of dust aggregates formed by gravitational instability and tends to favor a formation of comets by the accrection of pebbles at low velocities.
  •  
38.
  • Groussin, O., et al. (författare)
  • Temporal morphological changes in the Imhotep region of comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We report on the first major temporal morphological changes observed on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko in the smooth terrains of the Imhotep region. Methods. We used images of the OSIRIS cameras onboard Rosetta to follow the temporal changes from 24 May 2015 to 11 July 2015. Results. The morphological changes observed on the surface are visible in the form of roundish features that are growing in size from a given location in a preferential direction at a rate of 5.6-8.1 x 10(-5) m s(-1) during the observational period. The location where the changes started and the contours of the expanding features are bluer than the surroundings, which suggests that ices (H2O and/or CO2) are exposed on the surface. However, sublimation of ices alone is not sufficient to explain the observed expanding features. No significant variations in the dust activity pattern are observed during the period of changes.
  •  
39.
  • Gutierrez, P. J., et al. (författare)
  • Possible interpretation of the precession of comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Data derived from the reconstruction of the nucleus shape of comet 67P/Churyumov-Gerasimenko (67P) from images of the OSIRIS camera onboard ROSETTA show evidence that the nucleus rotates in complex mode. First, the orientation of the spin axis is not fixed in an inertial reference frame, which suggests a precessing motion around the angular momentum vector with a periodicity of approximately 257 h +/- 12 h. Second, periodograms of the right ascension and declination (RA/Dec) coordinates of the body-frame Z axis show a very significant (higher than 99.99%) periodicity at 276 h +/- 12 h, different from the rotational period of 12.40 h as previously determined from light-curve analysis. Aims. The main goal is to interpret the data and associated periodicities of the spin axis orientation in space. Methods. We analyzed the spin axis orientation in space and associated periodicities and compared them with solutions of Euler equations under the assumption that the body rotates in torque-free conditions. Statistical tests comparing the observationally derived spin axis orientation with the outcome from simulations were applied to determine the most likely inertia moments, excitation level, and periods. Results. Under the assumption that the body is solid-rigid and rotates in torque-free conditions, the most likely interpretation is that 67P is spinning around the principal axis with the highest inertia moment with a period of about 13 h. At the same time, the comet precesses around the angular momentum vector with a period of about 6.35 h. While the rotating period of such a body would be about 12.4 h, RA/Dec coordinates of the spin axis would have a periodicity of about 270 h as a result of the combination of the two aforementioned motions. Conclusions. The most direct and simple interpretation of the complex rotation of 67P requires a ratio of inertia moments significantly higher than that of a homogeneous body.
  •  
40.
  • Höfner, S., et al. (författare)
  • Thermophysics of fractures on comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 608
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The camera OSIRIS on board Rosetta obtained high-resolution images of the nucleus of comet 67P/Churyumov-Gerasimenko (67P). Great parts of the nucleus surface are composed of fractured terrain.Aims. Fracture formation, evolution, and their potential relationship to physical processes that drive activity are not yet fully understood. Observed temperatures and gas production rates can be explained or interpreted with the presence of fractures by applying appropriate modelling methods.Methods. We followed a transient thermophysical model approach that includes radiative, conductive, and water-ice sublimation fluxes by considering a variety of heliocentric distances, illumination conditions, and thermophysical properties for a set of characteristic fracture geometries on the nucleus of 67P. We computed diurnal temperatures, heat fluxes, and outgassing behaviour in order to derive and distinguish the influence of the mentioned parameters on fractured terrain.Results. Our analysis confirms that fractures, as already indicated by former studies about concavities, deviate from flat-terrain topographies with equivalent properties, mostly through the effect of self-heating. Compared to flat terrain, illuminated cometary fractures are generally warmer, with smaller diurnal temperature fluctuations. Maximum sublimation rates reach higher peaks, and dust mantle quenching effects on sublimation rates are weaker. Consequently, the rough structure of the fractured terrain leads to significantly higher inferred surface thermal inertia values than for flat areas with identical physical properties, which might explain the range of measured thermal inertia on 67P.Conclusions. At 3.5 AU heliocentric distance, sublimation heat sinks in fractures converge to maximum values >50 W / m2 and trigger dust activity that can be related mainly to H2O. Fractures are likely to grow through the erosive interplay of alternating sublimation and thermal fatigue.
  •  
41.
  • La Forgia, F., et al. (författare)
  • Geomorphology and spectrophotometry of Philae's landing site on comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On 12 November 2014 the European mission Rosetta succeeded in delivering a lander, named Philae, on the surface of one of the smallest, low-gravity and most primitive bodies of the solar system, the comet 67P/Churyumov-Gerasimenko (67P). Aims. The aim of this paper is to provide a comprehensive geomorphological and spectrophotometric analysis of Philae's landing site (Agilkia) to give an essential framework for the interpretation of its in situ measurements. Methods. OSIRIS images, coupled with gravitational slopes derived from the 3D shape model based on stereo-photogrammetry were used to interpret the geomorphology of the site. We adopted the Hapke model, using previously derived parameters, to photometrically correct the images in orange filter (649.2 nm). The best approximation to the Hapke model, given by the Akimov parameter-less function, was used to correct the reflectance for the effects of viewing and illumination conditions in the other filters. Spectral analyses on coregistered color cubes were used to retrieve spectrophotometric properties. Results. The landing site shows an average normal albedo of 6.7% in the orange filter with variations of similar to 15% and a global featureless spectrum with an average red spectral slope of 15.2%/100 nm between 480.7 nm (blue filter) and 882.1 nm (near-IR filter). The spatial analysis shows a well-established correlation between the geomorphological units and the photometric characteristics of the surface. In particular, smooth deposits have the highest reflectance a bluer spectrum than the outcropping material across the area. Conclusions. The featureless spectrum and the redness of the material are compatible with the results by other instruments that have suggested an organic composition. The observed small spectral variegation could be due to grain size effects. However, the combination of photometric and spectral variegation suggests that a compositional differentiation is more likely. This might be tentatively interpreted as the effect of the efficient dust-transport processes acting on 67P. High-activity regions might be the original sources for smooth fine-grained materials that then covered Agilkia as a consequence of airfall of residual material. More observations performed by OSIRIS as the comet approaches the Sun would help interpreting the processes that work at shaping the landing site and the overall nucleus.
  •  
42.
  •  
43.
  • Matonti, C., et al. (författare)
  • Bilobate comet morphology and internal structure controlled by shear deformation
  • 2019
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 12:3, s. 157-162
  • Tidskriftsartikel (refereegranskat)abstract
    • Bilobate comets-small icy bodies with two distinct lobes-are a common configuration among comets, but the factors shaping these bodies are largely unknown. Cometary nuclei, the solid centres of comets, erode by ice sublimation when they are sufficiently close to the Sun, but the importance of a comet's internal structure on its erosion is unclear. Here we present three-dimensional analyses of images from the Rosetta mission to illuminate the process that shaped the Jupiter-family bilobate comet 67P/Churyumov-Gerasimenko over billions of years. We show that the comet's surface and interior exhibit shear-fracture and fault networks, on spatial scales of tens to hundreds of metres. Fractures propagate up to 500 m below the surface through a mechanically homogeneous material. Through fracture network analysis and stress modelling, we show that shear deformation generates fracture networks that control mechanical surface erosion, particularly in the strongly marked neck trough of 67P/Churyumov-Gerasimenko, exposing its interior. We conclude that shear deformation shapes and structures the surface and interior of bilobate comets, particularly in the outer Solar System where water ice sublimation is negligible.
  •  
44.
  • Oklay, N., et al. (författare)
  • Comparative study of water ice exposures on cometary nuclei using multispectral imaging data
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S394-S414
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep Impact, EPOXI and Rosetta missions visited comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko, respectively. Each of these three missions was equipped with both multispectral imagers and infrared spectrometers. Bright blue features containing water ice were detected in each of these comet nuclei. We analysed multispectral properties of enriched water ice features observed via Optical, Spectroscopic, and Infrared Remote Imaging System narrow angle camera on comet 67P in the wavelength range of 260-1000 nm and then compared with multispectral data of water ice deposits observed on comets 9P and 103P. We characterize the UV/VIS properties of water-ice-rich features observed on the nuclei of these three comets. When compared to the average surface of each comet, our analysis shows that the water ice deposits seen on comet 9P are similar to the clustered water-ice-rich features seen on comet 67P, while the water ice deposit seen on comet 103P is more akin to two large isolated water-ice-rich features seen on comet 67P. Our results indicate that the water ice deposit observed on comet 103P contains more water ice than the water-ice-rich features observed on comets 9P and 67P, proportionally to the average surface of each nucleus.
  •  
45.
  • Pajola, M., et al. (författare)
  • The pebbles/boulders size distributions on Sais : Rosetta's final landing site on comet 67P/Churyumov-Gerasimenko
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469:Suppl. 2, s. S636-S645
  • Tidskriftsartikel (refereegranskat)abstract
    • By using the imagery acquired by the Optical, Spectroscopic, and Infrared Remote Imaging System Wide-Angle Camera (OSIRISWAC), we prepare a high-resolution morphological map of the Rosetta Sais final landing site, characterized by an outcropping consolidated terrain unit, a coarse boulder deposit and a fine particle deposit. Thanks to the 0.014 m resolution images, we derive the pebbles/boulders size-frequency distribution (SFD) of the area in the size range of 0.07-0.70 m. Sais' SFD is best fitted with a two-segment differential power law: the first segment is in the range 0.07-0.26 m, with an index of -1.7 ± 0.1, while the second is in the range 0.26-0.50 m, with an index of -4.2 +0.4/-0.8. The 'knee' of the SFD, located at 0.26 m, is evident both in the coarse and fine deposits. When compared to the Agilkia Rosetta Lander Imaging System images, Sais surface is almost entirely free of the ubiquitous, cm-sized debris blanket observed by Philae. None the less, a similar SFD behaviour of Agilkia, with a steeper distribution above ~0.3 m, and a flatter trend below that, is observed. The activity evolution of 67P along its orbit provides a coherent scenario of how these deposits were formed. Indeed, different lift pressure values occurring on the two locations and at different heliocentric distances explain the presence of the cm-sized debris blanket on Agilkia observed at 3.0 au inbound. Contrarily, Sais activity after 2.1 au outbound has almost completely eroded the fine deposits fallen during perihelion, resulting in an almost dust-free surface observed at 3.8 au.
  •  
46.
  • Pajola, M., et al. (författare)
  • The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse
  • 2017
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 1:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Outbursts occur commonly on comets(1) with different frequencies and scales(2,3). Despite multiple observations suggesting various triggering processes(4,5), the driving mechanism of such outbursts is still poorly understood. Landslides have been invoked(6) to explain some outbursts on comet 103P/Hartley (2), although the process required a pre-existing dust layer on the verge of failure. The Rosetta mission observed several outbursts from its target comet 67P/ChuryumovGerasimenko, which were attributed to dust generated by the crumbling of materials from collapsing cliffs(7,8). However, none of the aforementioned works included definitive evidence that landslides occur on comets. Amongst the many features observed by Rosetta on the nucleus of the comet, one peculiar fracture, 70 m long and 1 m wide, was identified on images obtained in September 2014 at the edge of a cliff named Aswan(9). On 10 July 2015, the Rosetta Navigation Camera captured a large plume of dust that could be traced back to an area encompassing the Aswan escarpment(7). Five days later, the OSIRIS camera observed a fresh, sharp and bright edge on the Aswan cliff. Here we report the first unambiguous link between an outburst and a cliff collapse on a comet. We establish a new dust-plume formation mechanism that does not necessarily require the breakup of pressurized crust or the presence of supervolatile material, as suggested by previous studies(7). Moreover, the collapse revealed the fresh icy interior of the comet, which is characterized by an albedo > 0.4, and provided the opportunity to study how the crumbling wall settled down to form a new talus.
  •  
47.
  • Thomas, N., et al. (författare)
  • Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We present an investigation of the surface properties of areas on the nucleus of comet 67P/Churyumov-Gerasimenko. Aims. We aim to show that transport of material from one part of the cometary nucleus to another is a significant mechanism that influences the appearance of the nucleus and the surface thermal properties. Methods. We used data from the OSIRIS imaging system onboard the Rosetta spacecraft to identify surface features on the nucleus that can be produced by various transport mechanisms. We used simple calculations based on previous works to establish the plausibility of dust transport from one part of the nucleus to another. Results. We show by observation and modeling that "airfall" as a consequence of non-escaping large particles emitted from the neck region of the nucleus is a plausible explanation for the smooth thin deposits in the northern hemisphere of the nucleus. The consequences are also discussed. We also present observations of aeolian ripples and ventifacts. We show by numerical modeling that a type of saltation is plausible even under the rarified gas densities seen at the surface of the nucleus. However, interparticle cohesive forces present difficulties for this model, and an alternative mechanism for the initiation of reptation and creep may result from the airfall mechanism. The requirements on gas density and other parameters of this alternative make it a more attractive explanation for the observations. The uncertainties and implications are discussed.
  •  
48.
  • Agarwal, Jessica, et al. (författare)
  • Acceleration of individual, decimetre-sized aggregates in the lower coma of comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S78-S88
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of decimetre-sized, likely ice-containing aggregates ejected from a confined region on the surface of comet 67P/Churyumov-Gerasimenko. The images were obtained with the narrow angle camera of the Optical, Spectroscopic, and Infrared Remote Imaging System on board the Rosetta spacecraft in 2016 January when the comet was at 2 au from the Sun outbound from perihelion. We measure the acceleration of individual aggregates through a 2 h image series. Approximately 50 per cent of the aggregates are accelerated away from the nucleus, and 50 per cent towards it, and likewise towards either horizontal direction. The accelerations are up to one order of magnitude stronger than local gravity, and are most simply explained by the combined effect of gas drag accelerating all aggregates upwards, and the recoil force from asymmetric outgassing, either from rotating aggregates with randomly oriented spin axes and sufficient thermal inertia to shift the temperature maximum away from an aggregate's subsolar region, or from aggregates with variable ice content. At least 10 per cent of the aggregates will escape the gravity field of the nucleus and feed the comet's debris trail, while others may fall back to the surface and contribute to the deposits covering parts of the Northern hemisphere. The rocket force plays a crucial role in pushing these aggregates back towards the surface. Our observations show the future back fall material in the process of ejection, and provide the first direct measurement of the acceleration of aggregates in the innermost coma (<2 km) of a comet, where gas drag is still significant.
  •  
49.
  •  
50.
  • Attree, N., et al. (författare)
  • Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 611
  • Tidskriftsartikel (refereegranskat)abstract
    • We directly measured twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimated the minimum tensile strengths needed to support them against collapse under the comet's gravity. We find extremely low strengths of around 1 Pa or less (1 to 5 Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features and the implied previous collapse of another, suggests that they are prone to failure and that the true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of the 67P nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties either with size over the similar to 10-100 m range studied here or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small body (tens of km).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 127
Typ av publikation
tidskriftsartikel (118)
konferensbidrag (6)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (123)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Groussin, O. (81)
Sierks, H. (80)
Rodrigo, R. (80)
Koschny, D. (80)
Fornasier, S. (80)
Thomas, N (79)
visa fler...
Barbieri, C. (79)
Cremonese, G. (79)
Da Deppo, V. (79)
Jorda, L. (79)
Knollenberg, J. (79)
Lazzarin, M. (79)
Marzari, F. (79)
Bertaux, J. -L (78)
Bertini, I. (78)
De Cecco, M. (78)
Keller, H. U. (78)
Naletto, G. (78)
Vincent, J. -B (77)
Tubiana, C. (77)
Debei, S. (77)
Fulle, M. (77)
Rickman, Hans (76)
Barucci, M. A. (76)
Hviid, S. F. (74)
Oklay, N. (74)
Gutierrez, P. J. (71)
Kuehrt, E. (71)
Ip, W. -H (70)
Guettler, C. (68)
A'Hearn, M. F. (67)
Kramm, J. -R (66)
Lopez Moreno, J. J. (63)
Lara, L. M. (62)
Mottola, S. (61)
Pajola, M. (61)
Lamy, P. L. (53)
Agarwal, J. (51)
Davidsson, Björn (44)
Kueppers, M. (42)
Kovacs, G (42)
Scholten, F. (41)
Preusker, F. (40)
Shi, X. (37)
Bodewits, D. (37)
Deller, J. (36)
Hofmann, M. (36)
Kuppers, M. (36)
El-Maarry, M. R. (35)
Massironi, M. (34)
visa färre...
Lärosäte
Uppsala universitet (95)
Karolinska Institutet (13)
Göteborgs universitet (11)
Lunds universitet (11)
Kungliga Tekniska Högskolan (6)
Umeå universitet (3)
visa fler...
Mittuniversitetet (3)
Chalmers tekniska högskola (3)
Örebro universitet (2)
Luleå tekniska universitet (1)
visa färre...
Språk
Engelska (127)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (92)
Medicin och hälsovetenskap (18)
Teknik (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy