SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lanctot M.J.) "

Sökning: WFRF:(Lanctot M.J.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chu, M.S., et al. (författare)
  • Response of a resistive and rotating tokamak to external magnetic perturbations below the Alfven frequency
  • 2011
  • Ingår i: Nuclear Fusion. - 1741-4326 .- 0029-5515. ; 51, s. 073036-
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivated by the recent experimental observation that plasma stability can be improved by external magnetic perturbations, the general problem of plasma response to external magnetic perturbations is investigated. Different (vacuum, ideal and resistive) plasma response models are considered and compared. Plasma response, in experiments where stabilization was achieved, is obtained through computation using the MARS-F code, with a plasma model that includes both plasma resistivity and rotation. The resultant magnetic field line stochasticity is much reduced from that obtained formerly using the vacuum plasma model. This reduced stochasticity is more consistent with the favourable experimental observation of enhanced stability. Examples are given for the response of an ITER plasma to perturbations generated by the correction coils; and the response of a plasma to external coils (antenna) up to the Alfvén frequency.
  •  
2.
  • Lanctot, M.J., et al. (författare)
  • Measurement and modeling of three-dimensional equilibriua in DIII-D
  • 2011
  • Ingår i: Physics of Plasmas. - 1089-7674 .- 1070-664X. ; 18, s. 056121-
  • Tidskriftsartikel (refereegranskat)abstract
    • A detailed experiment-theory comparison reveals that linear ideal MHD theory is in quantitative agreement with external magnetic and internal soft x-ray measurements of the plasma response to externally applied non-axisymmetric fields over a broad range of beta and rotation. This result represents a significant step toward the goal of advancing the understanding of three-dimensional tokamak equilibria. Both the magnetic and soft x-ray measurements show the driven plasma perturbation increases linearly with the applied perturbation, suggesting the relevance of linear plasma response models. The magnetic and soft x-ray measurements are made at multiple toroidal and poloidal locations, allowing well resolved measurements of the global structure. The comparison also highlights the need to include kinetic effects in the MHD model once beta exceeds 80% of the kink mode limit without a conducting wall. Two distinct types of response fields are identified by the linear ideal MHD model: one that consists of localized currents at the rational surfaces that cancel the applied resonant field and another that is excited by the components of the external field that couple to the kink mode. Numerical simulations show these two fields have similar amplitudes in ITER-shaped DIII-D discharges where n = 3 fields are used to suppress edge localized modes.
  •  
3.
  • Lanctot, M. J., et al. (författare)
  • Validation of the linear ideal magnetohydrodynamic model of three-dimensional tokamak equilibria
  • 2010
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 17:3, s. 030701-
  • Tidskriftsartikel (refereegranskat)abstract
    • The first quantitative comparison of linear ideal magnetohydrodynamic (MHD) theory with external magnetic measurements of the nonaxisymmetric plasma perturbation driven by external long-wavelength magnetic fields in high-temperature tokamak plasmas is presented. The comparison yields good (within 20%) agreement for plasma pressures up to ∼ 75% of the ideal stability limit calculated without a conducting wall. For higher plasma pressures, the ideal MHD model tends to overestimate the perturbed field indicating the increasing importance of stabilizing nonideal effects.
  •  
4.
  • Lanctot, M. J., et al. (författare)
  • Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
  • 2017
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 24:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q similar to 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the "overlap" field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the "critical overlap fields" at which magnetic islands form are similar for applied n = 1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m> nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Together, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).
  •  
5.
  • Liu, Yueqiang, 1971, et al. (författare)
  • Resistive wall mode control code maturity: progress and specific examples
  • 2010
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 52:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Two issues of the resistive wall mode (RWM) control code maturity are addressed: the inclusion of advanced mode damping physics beyond the ideal MHD description, and the possibility of taking into account the influence of 3D features of the conducting structures on the mode stability and control. Examples of formulations and computational results are given, using the MARS-F/K codes and the CarMa code. The MARS-K calculations for a DIII-D plasma shows that the fast ion contributions, which can give additional drift kinetic stabilization in the perturbative approach, also drive an extra unstable branch of mode in the self-consistent kinetic modelling. The CarMa modelling for the ITER steady state advanced plasmas shows about 20% reduction in the RWM growth rate by the volumetric blanket modules. The multi-mode analysis predicts a weak interaction between the n = 0 and the n = 1 RWMs, due to the 3D ITER walls. The CarMa code is also successfully applied to model the realistic feedback experiments in RFX.
  •  
6.
  • Okabayashi, M., et al. (författare)
  • Off-axis Fishbone-like Instability and Excitation of Resistive Wall Mode in JT-60U and DIII-D
  • 2011
  • Ingår i: Physics of Plasmas. - 1089-7674 .- 1070-664X. ; 18, s. 056121-
  • Tidskriftsartikel (refereegranskat)abstract
    • An energetic-particle (EP)-driven “off-axis-fishbone-like mode (OFM)” often triggers a resistive wall mode (RWM) in JT-60U and DIII-D devices, preventing long-duration high-βN discharges. In these experiments, the EPs are energetic ions (70–85 keV) injected by neutral beams to produce high-pressure plasmas. EP-driven bursting events reduce the EP density and the plasma rotation simultaneously. These changes are significant in high-βN low-rotation plasmas, where the RWM stability is predicted to be strongly influenced by the EP precession drift resonance and by the plasma rotation near the q = 2 surface (kinetic effects). Analysis of these effects on stability with a self-consistent perturbation to the mode structure using the MARS-K code showed that the impact of EP losses and rotation drop is sufficient to destabilize the RWM in low-rotation plasmas, when the plasma rotation normalized by Alfvén frequency is only a few tenths of a percent near the q = 2 surface. The OFM characteristics are very similar in JT-60U and DIII-D, including nonlinear mode evolution. The modes grow initially like a classical fishbone, and then the mode structure becomes strongly distorted. The dynamic response of the OFM to an applied n = 1 external field indicates that the mode retains its external kink character. These comparative studies suggest that an energetic particle-driven “off-axis-fishbone-like mode” is a new EP-driven branch of the external kink mode in wall-stabilized plasmas, analogous to the relationship of the classical fishbone branch to the internal kink mode.
  •  
7.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy