SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Langbehn D.) "

Sökning: WFRF:(Langbehn D.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Langbehn, D, et al. (författare)
  • A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length.
  • 2004
  • Ingår i: Clinical Genetics. - : Wiley. - 0009-9163 .- 1399-0004. ; 65:4, s. 267-277
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is a neurodegenerative disorder caused by an unstable CAG repeat. For patients at risk, participating in predictive testing and learning of having CAG expansion, a major unanswered question shifts from "Will I get HD?" to "When will it manifest?" Using the largest cohort of HD patients analyzed to date (2913 individuals from 40 centers worldwide), we developed a parametric survival model based on CAG repeat length to predict the probability of neurological disease onset (based on motor neurological symptoms rather than psychiatric onset) at different ages for individual patients. We provide estimated probabilities of onset associated with CAG repeats between 36 and 56 for individuals of any age with narrow confidence intervals. For example, our model predicts a 91% chance that a 40-year-old individual with 42 repeats will have onset by the age of 65, with a 95% confidence interval from 90 to 93%. This model also defines the variability in HD onset that is not attributable to CAG length and provides information concerning CAG-related penetrance rates.
  •  
2.
  •  
3.
  • Byrne, L. M., et al. (författare)
  • Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington's disease: a retrospective cohort analysis
  • 2017
  • Ingår i: Lancet Neurology. - 1474-4422. ; 16:8, s. 601-609
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Blood biomarkers of neuronal damage could facilitate clinical management of and therapeutic development for Huntington's disease. We investigated whether neurofilament light protein NfL (also known as NF-L) in blood is a potential prognostic marker of neurodegeneration in patients with Huntington's disease. Methods We did a retrospective analysis of healthy controls and carriers of CAG expansion mutations in HTT participating in the 3-year international TRACK-HD study. We studied associations between NfL concentrations in plasma and clinical and MRI neuroimaging findings, namely cognitive function, motor function, and brain volume (global and regional). We used random effects models to analyse cross-sectional associations at each study visit and to assess changes from baseline, with and without adjustment for age and CAG repeat count. In an independent London-based cohort of 37 participants (23 HTT mutation carriers and 14 controls), we further assessed whether concentrations of NfL in plasma correlated with those in CSF. Findings Baseline and follow-up plasma samples were available from 97 controls and 201 individuals carrying HTT mutations. Mean concentrations of NfL in plasma at baseline were significantly higher in HTT mutation carriers than in controls (3.63 [SD 0.54] log pg/mL vs 2.68 [0.52] log pg/mL, p<0.0001) and the difference increased from one disease stage to the next. At any given timepoint, NfL concentrations in plasma correlated with clinical and MRI findings. In longitudinal analyses, baseline NfL concentration in plasma also correlated significantly with subsequent decline in cognition (symbol-digit modality test r=-0.374, p<0.0001; Stroop word reading r=-0.248, p=0.0033), total functional capacity (r=-0.289, p=0.0264), and brain atrophy (caudate r=0.178, p=0.0087; whole-brain r=0602, p<0.0001; grey matter r=0.518, p<00001; white matter r=0.588, p<0.0001; and ventricular expansion r=-0.589, p<0.0001). All changes except Stroop word reading and total functional capacity remained significant after adjustment for age and CAG repeat count. In 104 individuals with premanifest Huntington's disease, NfL concentration in plasma at baseline was associated with subsequent clinical onset during the 3-year follow-up period (hazard ratio 3.29 per log pg/mL, 95% CI 1.48-7.34, p=00036). Concentrations of NfL in CSF and plasma were correlated in mutation carriers (r=0868, p<0.0001). Interpretation NfL in plasma shows promise as a potential prognostic blood biomarker of disease onset and progression in Huntington's disease. Copyright (C) The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
  •  
4.
  • Scahill, R. I., et al. (författare)
  • Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington?s disease Young Adult Study (HD-YAS): a cross-sectional analysis
  • 2020
  • Ingår i: Lancet Neurology. - : Elsevier BV. - 1474-4422. ; 19:6, s. 502-512
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Disease-modifying treatments are in development for Huntington's disease; crucial to their success is to identify a timepoint in a patient's life when there is a measurable biomarker of early neurodegeneration while clinical function is still intact. We aimed to identify this timepoint in a novel cohort of young adult premanifest Huntington's disease gene carriers (preHD) far from predicted clinical symptom onset. Methods We did the Huntington's disease Young Adult Study (HD-YAS) in the UK. We recruited young adults with preHD and controls matched for age, education, and sex to ensure each group had at least 60 participants with imaging data, accounting for scan fails. Controls either had a family history of Huntington's disease but a negative genetic test, or no known family history of Huntington's disease. All participants underwent detailed neuropsychiatric and cognitive assessments, including tests from the Cambridge Neuropsychological Test Automated Battery and a battery assessing emotion, motivation, impulsivity and social cognition (EMOTICOM). Imaging (done for all participants without contraindications) included volumetric MRI, diffusion imaging, and multiparametric mapping. Biofluid markers of neuronal health were examined using blood and CSF collection. We did a cross-sectional analysis using general least-squares linear models to assess group differences and associations with age and CAG length, relating to predicted years to clinical onset. Results were corrected for multiple comparisons using the false discovery rate (FDR), with FDR <0.05 deemed a significant result. Findings Data were obtained between Aug 2, 2017, and April 25, 2019. We recruited 64 young adults with preHD and 67 controls. Mean ages of participants were 29.0 years (SD 5.6) and 29.1 years (5.7) in the preHD and control groups, respectively. We noted no significant evidence of cognitive or psychiatric impairment in preHD participants 23.6 years (SD 5.8) from predicted onset (FDR 0.22-0.87 for cognitive measures, 0.31-0.91 for neuropsychiatric measures). The preHD cohort had slightly smaller putamen volumes (FDR=0.03), but this did not appear to be closely related to predicted years to onset (FDR=0.54). There were no group differences in other brain imaging measures (FDR >0.16). CSF neurofilament light protein (NfL), plasma NfL, and CSF YKL-40 were elevated in this far-from-onset preHD cohort compared with controls (FDR<0.0001, =0.01, and =0.03, respectively). CSF NfL elevations were more likely in individuals closer to expected clinical onset (FDR <0.0001). Interpretation We report normal brain function yet a rise in sensitive measures of neurodegeneration in a preHD cohort approximately 24 years from predicted clinical onset. CSF NfL appears to be a more sensitive measure than plasma NfL to monitor disease progression. This preHD cohort is one of the earliest yet studied, and our findings could be used to inform decisions about when to initiate a potential future intervention to delay or prevent further neurodegeneration while function is intact.
  •  
5.
  • Woods, P. J., et al. (författare)
  • A review of adaptation options in fisheries management to support resilience and transition under socio-ecological change
  • 2022
  • Ingår i: ICES Journal of Marine Science. - : Oxford University Press (OUP). - 1054-3139 .- 1095-9289. ; 79:2, s. 463-479
  • Forskningsöversikt (refereegranskat)abstract
    • Social-ecological systems dependent on fisheries must be resilient or adapt to remain viable in the face of change. Here, we identified possible interventions (termed “adaptation options”) from published literature, aimed at supporting social or ecological resilience and/or aiding adaptation to changes induced by environmental or social stressors. Our searches centered on nations/regions across North America, Europe, and the South Pacific, encompassing fisheries literature with and without a climate change focus, to compare how, when, and by whom interventions are currently or potentially implemented. We expected that adaptation options within a climate change context would have a greater focus on enhancing social resilience due to a connection with climate change adaptation assessment methodology. Instead, we found a greater focus on ecological resilience, likely indicating a focus on management adaptation. This pattern, along with the more extensive use of social adaptation options responsively and outside the context of climate change, along with an importance in bottom-up influences in implementing them, suggests a general lack of centralized planning and organization with regards to adaptation of stakeholders. Determining how adaptation options are created, chosen, and implemented is a crucial step within or external to ecosystem-based management, especially if planned stakeholder adaption is the goal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy