SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Langer Dominik) "

Sökning: WFRF:(Langer Dominik)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ceccarelli, C., et al. (författare)
  • Herschel spectral surveys of star- forming regions Overview of the 555-636 GHz range
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L22-
  • Tidskriftsartikel (refereegranskat)abstract
    • High resolution line spectra of star-forming regions are mines of information: they provide unique clues to reconstruct the chemical, dynamical, and physical structure of the observed source. We present the first results from the Herschel key project " Chemical HErschel Surveys of Star forming regions", CHESS. We report and discuss observations towards five CHESS targets, one outflow shock spot and four protostars with luminosities bewteen 20 and 2 x 105 L similar to : L1157-B1, IRAS 16293-2422, OMC2-FIR4, AFGL 2591, and NGC 6334I. The observations were obtained with the heterodyne spectrometer HIFI on board Herschel, with a spectral resolution of 1 MHz. They cover the frequency range 555-636 GHz, a range largely unexplored before the launch of the Herschel satellite. A comparison of the five spectra highlights spectacular differences in the five sources, for example in the density of methanol lines, or the presence./absence of lines from S-bearing molecules or deuterated species. We discuss how these differences can be attributed to the different star-forming mass or evolutionary status.
  •  
2.
  • Codella, C., et al. (författare)
  • The CHESS spectral survey of star forming regions : Peering into the protostellar shock L1157-B1. I. Shock chemical complexity
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L112-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first results of the unbiased survey of the L1157-B1 bow shock, obtained with HIFI in the framework of the key program Chemical HErschel Survey of Star forming regions (CHESS). The L1157 outflow is driven by a low-mass Class 0 protostar and is considered the prototype of the so-called chemically active outflows. The bright blue-shifted bow shock B1 is the ideal laboratory for studying the link between the hot (~1000-2000 K) component traced by H2 IR-emission and the cold (~10-20 K) swept-up material. The main aim is to trace the warm gas chemically enriched by the passage of a shock and to infer the excitation conditions in L1157-B1. A total of 27 lines are identified in the 555-636 GHz region, down to an average 3σ level of 30 mK. The emission is dominated by CO(5-4) and H2O(110-101) transitions, as discussed by Lefloch et al. in this volume. Here we report on the identification of lines from NH3, H2CO, CH3OH, CS, HCN, and HCO+. The comparison between the profiles produced by molecules released from dust mantles (NH3, H2CO, CH3OH) and that of H2O is consistent with a scenario in which water is also formed in the gas-phase in high-temperature regions where sputtering or grain-grain collisions are not efficient. The high excitation range of the observed tracers allows us to infer, for the first time for these species, the existence of a warm (≥200 K) gas component coexisting in the B1 bow structure with the cold and hot gas detected from ground. Herschel is an ESA space observatory with science instruments provided by European-led principal Investigator consortia and with important participation from NASA.Table 1 is only available in electronic form at http://www.aanda.org
  •  
3.
  • Czeszumski, Artur, et al. (författare)
  • #EEGManyLabs: Investigating the Replicability of Influential EEG Experiments
  • 2024
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • There is growing awareness across the neuroscience community that the replicability of findings on the relationship between brain activity and cognitive phenomena can be improved by conducting studies with high statistical power that adhere to well-defined and standardized analysis pipelines. Inspired by efforts from the psychological sciences, and with the desire to examine some of the foundational findings using electroencephalography (EEG), we have launched #EEGManyLabs, a large-scale international collaborative replication effort. Since its discovery in the early 20th century, EEG has had a profound influence on our understanding of human cognition, but there is limited evidence on the replicability of some of the most highly cited discoveries. After a systematic search and selection process, we have identified 27 of the most influential and continually cited studies in the field. We plan to directly test the replicability of key findings from 20 of these studies in teams of at least three independent laboratories. The design and protocol of each replication effort will be submitted as a Registered Report and peer-reviewed prior to data collection. Prediction markets, open to all EEG researchers, will be used as a forecasting tool to examine which findings the community expects to replicate. This project will update our confidence in some of the most influential EEG findings and generate a large open access database that can be used to inform future research practices. Finally, through this international effort, we hope to create a cultural shift towards inclusive, high-powered multi-laboratory collaborations.
  •  
4.
  • Gezelius, Henrik, 1977-, et al. (författare)
  • Conditional genetic labeling of the Renshaw cell population for functional studies of motor control
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The Renshaw cells were among the first interneurons to be characterized in the mammalian spinal cord. Although the basic function of recurrent inhibition to motor neurons, as well as the Renshaw cell connectivity to other neurons have been thoroughly studied, the exact functional role of the Renshaw cells in motor control is still unknown. To further characterize the role of Renshaw cells in spinal cord circuitry, we searched for candidate genes useful in the Cre-loxP system. It has been reported that the mRNA expression of nicotinic cholinergic receptor alpha 2 (Chrna2) is found in a restricted number of cells at the ventral rim in adult rat and mouse spinal cord. In our own search for genes with distinct ventral expression, we noted a similar restricted Chrna2 mRNA expression pattern in the mouse spinal cord at postnatal day (P) 11 and during development at embryonic day 14.5. Based on the fact that the gene product is a cholinergic receptor and the pattern of expression, the neurons are predicted to be Renshaw cells. The possibility that these cells were motor neurons was excluded, since Chrna2 and Vesicular acetylcholine were not co-expressed at P11. To further study this cell population, we have generated a transgenic mouse expressing Cre recombinase (Cre) under the control of the Chrna2 promoter region. To visualize the Cre-expressing cells, the Chrna2-Cre transgenic mouse were bred with a reporter mouse expressing β-galactosidase (β-gal) in the nucleus after loxP excision. As expected, spinal cord β-gal immunoreactivity was observed in a limited number of ventrally located cells in the Cre-bearing offspring. Co-labeling of β-gal with calbindin-28K, a known marker for Renshaw cells, indicated that a majority of the calbindin positive cells were also β-gal positive at the ventral rim where calbindin is specific. In addition, β-gal positive cells without observable calbindin were also detected. It is conceivable that Chrna2 is expressed in additional cells apart from Renshaw cells or that a previously unidentified Renshaw cell subpopulation does not express calbindin. Nonetheless, a mouse with Cre-activity restricted to Chrna2-expressing cells opens the possibility to functionally study a limited population of spinal cord interneurons through genetic techniques, with the ambition to explore the specific role of Renshaw cells in spinal cord circuitry and motor control.
  •  
5.
  • Langer, Dominik, et al. (författare)
  • HelioScan : A software framework for controlling in vivo microscopy setups with high hardware flexibility, functional diversity and extendibility
  • 2013
  • Ingår i: Journal of Neuroscience Methods. - : Elsevier BV. - 0165-0270 .- 1872-678X. ; 215:1, s. 38-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Intravital microscopy such as in vivo imaging of brain dynamics is often performed with custom-built microscope setups controlled by custom-written software to meet specific requirements. Continuous technological advancement in the field has created a need for new control software that is flexible enough to support the biological researcher with innovative imaging techniques and provide the developer with a solid platform for quickly and easily implementing new extensions. Here, we introduce HelioScan, a software package written in LabVIEW, as a platform serving this dual role. HelioScan is designed as a collection of components that can be flexibly assembled into microscope control software tailored to the particular hardware and functionality requirements. Moreover, HelioScan provides a software framework, within which new functionality can be implemented in a quick and structured manner. A specific HelioScan application assembles at run-time from individual software components, based on user-definable configuration files. Due to its component-based architecture, HelioScan can exploit synergies of multiple developers working in parallel on different components in a community effort. We exemplify the capabilities and versatility of HelioScan by demonstrating several in vivo brain imaging modes, including camera-based intrinsic optical signal imaging for functional mapping of cortical areas, standard two-photon laser-scanning microscopy using galvanometric mirrors, and high-speed in vivo two-photon calcium imaging using either acousto-optic deflectors or a resonant scanner. We recommend HelioScan as a convenient software framework for the in vivo imaging community.
  •  
6.
  • Lefloch, B., et al. (författare)
  • The CHESS spectral survey of star forming regions : Peering into the protostellar shock L1157-B1. II. Shock dynamics
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L113-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The outflow driven by the low-mass class 0 protostar L1157 is the prototype of the so-called chemically active outflows. The bright bowshock B1 in the southern outflow lobe is a privileged testbed of magneto-hydrodynamical (MHD) shock models, for which dynamical and chemical processes are strongly interdependent. Aims: We present the first results of the unbiased spectral survey of the L1157-B1 bowshock, obtained in the framework of the key program “Chemical HErschel Surveys of star forming regions” (CHESS). The main aim is to trace the warm and chemically enriched gas and to infer the excitation conditions in the shock region. Methods: The CO 5-4 and o-H2O 110-101 lines have been detected at high-spectral resolution in the unbiased spectral survey of the HIFI-band 1b spectral window (555-636 GHz), presented by Codella et al. in this volume. Complementary ground-based observations in the submm window help establish the origin of the emission detected in the main-beam of HIFI and the physical conditions in the shock. Results: Both lines exhibit broad wings, which extend to velocities much higher than reported up to now. We find that the molecular emission arises from two regions with distinct physical conditions : an extended, warm (100 K), dense (3 × 105 cm-3) component at low-velocity, which dominates the water line flux in Band 1; a secondary component in a small region of B1 (a few arcsec) associated with high-velocity, hot (>400 K) gas of moderate density ((1.0-3.0) × 104 cm-3), which appears to dominate the flux of the water line at 179μm observed with PACS. The water abundance is enhanced by two orders of magnitude between the low- and the high-velocity component, from 8 × 10-7 up to 8 × 10-5. The properties of the high-velocity component agree well with the predictions of steady-state C-shock models. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
  •  
7.
  • Snyder, Joel S., et al. (författare)
  • #EEGManyLabs: Investigating the replicability of influential EEG experiments
  • 2021
  • Ingår i: Cortex. - : Elsevier. - 1973-8102 .- 0010-9452. ; 144, s. 213-229
  • Tidskriftsartikel (refereegranskat)abstract
    • There is growing awareness across the neuroscience community that the replicability of findings about the relationship between brain activity and cognitive phenomena can be improved by conducting studies with high statistical power that adhere to well-defined and standardised analysis pipelines. Inspired by recent efforts from the psychological sciences, and with the desire to examine some of the foundational findings using electroencephalog-raphy (EEG), we have launched #EEGManyLabs, a large-scale international collaborative replication effort. Since its discovery in the early 20th century, EEG has had a profound in-fluence on our understanding of human cognition, but there is limited evidence on the replicability of some of the most highly cited discoveries. After a systematic search and se-lection process, we have identified 27 of the most influential and continually cited studies in the field. We plan to directly test the replicability of key findings from 20 of these studies in teams of at least three independent laboratories. The design and protocol of each replication effort will be submitted as a Registered Report and peer-reviewed prior to data collection. Prediction markets, open to all EEG researchers, will be used as a forecasting tool to examine which findings the community expects to replicate. This project will update our confidence in some of the most influential EEG findings and generate a large open access database that can be used to inform future research practices. Finally, through this international effort, we hope to create a cultural shift towards inclusive, high-powered multi-laboratory collaborations. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
8.
  • Vastel, C., et al. (författare)
  • Ortho-to-para ratio of interstellar heavy water
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L31 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular D/H ratios have been found in the environments of low-mass star-forming regions, and in particular the Class 0 protostar IRAS 16293-2422. Aims. The CHESS (Chemical HErschel Surveys of Star forming regions) key program aims to study the molecular complexity of the interstellar medium. The high sensitivity and spectral resolution of the Herschel/HIFI instrument provide a unique opportunity to observe the fundamental 1(1,1)-0(0,0) transition of the ortho-D2O molecule, which is inaccessible from the ground, and determine the ortho-to-para D2O ratio. Methods. We detected the fundamental transition of the ortho-D2O molecule at 607.35 GHz towards IRAS 16293-2422. The line is seen in absorption with a line opacity of 0.62 +/- 0.11 (1 sigma). From the previous ground-based observations of the fundamental 1(1,0)-1(0,1) transition of para-D2O seen in absorption at 316.80 GHz, we estimate a line opacity of 0.26 +/- 0.05 (1 sigma). Results. We show that the observed absorption is caused by the cold gas in the envelope of the protostar. Using these new observations, we estimate for the first time the ortho-to-para D2O ratio to be lower than 2.6 at a 3 sigma level of uncertainty, which should be compared with the thermal equilibrium value of 2:1.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy