SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lannfelt L.) "

Sökning: WFRF:(Lannfelt L.)

  • Resultat 1-50 av 204
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pulit, S. L., et al. (författare)
  • Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes
  • 2018
  • Ingår i: Neurology-Genetics. - : Ovid Technologies (Wolters Kluwer Health). - 2376-7839. ; 4:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective We sought to assess whether genetic risk factors for atrial fibrillation (AF) can explain cardioembolic stroke risk. We evaluated genetic correlations between a previous genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors. We observed a strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson r = 0.77 and 0.76, respectively, across SNPs with p < 4.4 x 10(-4) in the previous AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio [OR] per SD = 1.40, p = 1.45 x 10(-48)), explaining similar to 20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per SD = 1.07,p = 0.004), but no other primary stroke subtypes (all p > 0.1). Genetic risk of AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Surendran, Praveen, et al. (författare)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
9.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (> 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.
  •  
10.
  • Escott-Price, Valentina, et al. (författare)
  • Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:6, s. e94661-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. Principal Findings: In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4x10(-6)) and 14 (IGHV1-67 p = 7.9x10(-8)) which indexed novel susceptibility loci. Significance: The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.
  •  
11.
  • Jones, Lesley, et al. (författare)
  • Convergent genetic and expression data implicate immunity in Alzheimer's disease
  • 2015
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 11:6, s. 658-671
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Late-onset Alzheimer's disease (AD) is heritable with 20 genes showing genome-wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease, we extended these genetic data in a pathway analysis. Methods: The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results: ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (P = 3.27 X 10(-12) after multiple testing correction for pathways), regulation of endocytosis (P = 1.31 X 10(-11)), cholesterol transport (P = 2.96 X 10(-9)), and proteasome-ubiquitin activity (P = 1.34 X 10(-6)). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected P = .002-.05). Conclusions: The immime response, regulation of endocytosis, cholesterol transport, and protein ubiquitination represent prime targets for AD therapeutics.
  •  
12.
  •  
13.
  •  
14.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.
  •  
15.
  • Manning, Alisa, et al. (författare)
  • A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk
  • 2017
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 66:7, s. 2019-2032
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.
  •  
16.
  •  
17.
  •  
18.
  • Chase, A., et al. (författare)
  • Profound parental bias associated with chromosome 14 acquired uniparental disomy indicates targeting of an imprinted locus
  • 2015
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 0887-6924 .- 1476-5551. ; 29:10, s. 2069-2074
  • Tidskriftsartikel (refereegranskat)abstract
    • Acquired uniparental disomy (aUPD) is a common finding in myeloid malignancies and typically acts to convert a somatically acquired heterozygous mutation to homozygosity. We sought to identify the target of chromosome 14 aUPD (aUPD14), a recurrent abnormality in myeloid neoplasms and population cohorts of elderly individuals. We identified 29 cases with aUPD14q that defined a minimal affected region (MAR) of 11.2 Mb running from 14q32.12 to the telomere. Exome sequencing (n = 7) did not identify recurrently mutated genes, but methylation-specific PCR at the imprinted MEG3-DLK1 locus located within the MAR demonstrated loss of maternal chromosome 14 and gain of paternal chromosome 14 (P < 0.0001), with the degree of methylation imbalance correlating with the level of aUPD (r = 0.76; P = 0.0001). The absence of driver gene mutations in the exomes of three individuals with aUPD14q but no known haematological disorder suggests that aUPD14q may be sufficient to drive clonal haemopoiesis. Analysis of cases with both aUPD14q and JAK2 V617F (n = 11) indicated that aUPD14q may be an early event in some cases but a late event in others. We conclude that aUPD14q is a recurrent abnormality that targets an imprinted locus and may promote clonal haemopoiesis either as an initiating event or as a secondary change.
  •  
19.
  •  
20.
  • Hampel, H., et al. (författare)
  • The Amyloid-beta Pathway in Alzheimer's Disease
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26, s. 5481-5503
  • Tidskriftsartikel (refereegranskat)abstract
    • Breakthroughs in molecular medicine have positioned the amyloid-beta (A beta) pathway at the center of Alzheimer's disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the A beta cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of A beta science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of A beta pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct A beta species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for A beta-targeting therapeutic strategies in development for the early treatment of AD.
  •  
21.
  • Hampel, H., et al. (författare)
  • The amyloid-beta pathway in Alzheimer's disease: a plain language summary
  • 2023
  • Ingår i: Neurodegenerative Disease Management. - : Future Medicine Ltd. - 1758-2024 .- 1758-2032. ; 13:3, s. 141-9
  • Tidskriftsartikel (refereegranskat)abstract
    • What is this summary about? This plain language summary of an article published in Molecular Psychiatry, reviews the evidence supporting the role of the amyloid-b (Ab) pathway and its dysregulation in Alzheimer's disease (AD), and highlights the rationale for drugs targeting the A beta pathway in the early stages of the disease. Why is this important? A beta is a protein fragment (or peptide) that exists in several forms distinguished by their size, shape/structure, degree of solubility and disease relevance. The accumulation of A beta plaques is a hallmark of AD. However, smaller, soluble aggregates of A beta - including Ab protofibrils - also play a role in the disease. Because A beta-related disease mechanisms are complex, the diagnosis, treatment and management of AD should be reflective of and guided by up-to-date scientific knowledge and research findings in this area. This article describes the A beta protein and its role in AD, summarizing the evidence showing that altered A beta clearance from the brain may lead to the imbalance, toxic buildup and misfolding of the protein - triggering a cascade of cellular, molecular and systematic events that ultimately lead to AD. What are the key takeaways? The physiological balance of brain A beta levels in the context of AD is complex. Despite many unanswered questions, mounting evidence indicates that A beta has a central role in driving AD progression. A better understanding of the A beta pathway biology will help identify the best therapeutic targets for AD and inform treatment approaches.
  •  
22.
  •  
23.
  • Nikpay, Majid, et al. (författare)
  • A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:10, s. 1121-1121
  • Tidskriftsartikel (refereegranskat)abstract
    • Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association study (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of similar to 185,000 CAD cases and controls, interrogating 6.7 million common (minor allele frequency (MAF) > 0.05) and 2.7 million low-frequency (0.005 < MAF < 0.05) variants. In addition to confirming most known CAD-associated loci, we identified ten new loci (eight additive and two recessive) that contain candidate causal genes newly implicating biological processes in vessel walls. We observed intralocus allelic heterogeneity but little evidence of low-frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD, showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect size.
  •  
24.
  • Blom, Elin Susanne, et al. (författare)
  • Does APOE explain the linkage of Alzheimer’s disease to chromosome 19q13?
  • 2008
  • Ingår i: American Journal of Medical Genetics Part B: Neuropsychiatric Genetics American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. - : Wiley. - 1552-485X. ; 147B:6, s. 778-83
  • Tidskriftsartikel (refereegranskat)abstract
    • We have studied the impact of the apolipoprotein E gene (APOE) on the chromosome 19 linkage peak from an analysis of sib-pairs affected by Alzheimer's disease. We genotyped 417 affected sib-pairs (ASPs) collected in Sweden and Norway (SWE), the UK and the USA for 10 microsatellite markers on chromosome 19. The highest Zlr (3.28, chromosome-wide P-value 0.036) from the multi-point linkage analysis was located approximately 1 Mb from APOE, at marker D19S178. The linkage to chromosome 19 was well explained by APOE in the whole sample as well as in the UK and USA subsamples, as identity by descent (IBD) increased with the number of epsilon 4 alleles in ASPs. There was a suggestion from the SWE subsample that linkage was higher than would be expected from APOE alone, although the test for this did not reach formal statistical significance. There was also a significant age at onset (aao) effect on linkage to chromosome 19q13 in the whole sample, which manifested itself as increased IBD sharing in relative pairs with lower mean aao. This effect was partially, although not completely, explained by APOE. The aao effect varied considerably between the different subsamples, with most of the effect coming from the UK sample. The other samples showed smaller effects in the same direction, but these were not significant.
  •  
25.
  • de la Vega, Maria Pagnon, et al. (författare)
  • The Uppsala APP deletion causes early onset autosomal dominant Alzheimer's disease by altering APP processing and increasing amyloid beta fibril formation
  • 2021
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 13:606
  • Tidskriftsartikel (refereegranskat)abstract
    • Point mutations in the amyloid precursor protein gene (APP) cause familial Alzheimer's disease (AD) by increasing generation or altering conformation of amyloid beta (A beta). Here, we describe the Uppsala APP mutation (Delta 690-695), the first reported deletion causing autosomal dominant AD. Affected individuals have an age at symptom onset in their early forties and suffer from a rapidly progressing disease course. Symptoms and biomarkers are typical of AD, with the exception of normal cerebrospinal fluid (CSF) A beta 42 and only slightly pathological amyloid-positron emission tomography signals. Mass spectrometry and Western blot analyses of patient CSF and media from experimental cell cultures indicate that the Uppsala APP mutation alters APP processing by increasing beta-secretase cleavage and affecting alpha-secretase cleavage. Furthermore, in vitro aggregation studies and analyses of patient brain tissue samples indicate that the longer form of mutated A beta, A beta Upp1-42(Delta 19-24), accelerates the formation of fibrils with unique polymorphs and their deposition into amyloid plaques in the affected brain.
  •  
26.
  •  
27.
  • Lambert, J-C, et al. (författare)
  • Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease
  • 2013
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 18:4, s. 461-470
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, several genome-wide association studies (GWASs) have led to the discovery of nine new loci of genetic susceptibility in Alzheimer's disease (AD). However, the landscape of the AD genetic susceptibility is far away to be complete and in addition to single-SNP (single-nucleotide polymorphism) analyses as performed in conventional GWAS, complementary strategies need to be applied to overcome limitations inherent to this type of approaches. We performed a genome-wide haplotype association (GWHA) study in the EADI1 study (n = 2025 AD cases and 5328 controls) by applying a sliding-windows approach. After exclusion of loci already known to be involved in AD (APOE, BIN1 and CR1), 91 regions with suggestive haplotype effects were identified. In a second step, we attempted to replicate the best suggestive haplotype associations in the GERAD1 consortium (2820 AD cases and 6356 controls) and observed that 9 of them showed nominal association. In a third step, we tested relevant haplotype associations in a combined analysis of five additional case-control studies (5093 AD cases and 4061 controls). We consistently replicated the association of a haplotype within FRMD4A on Chr.10p13 in all the data set analyzed (OR: 1.68; 95% CI: (1.43-1.96); P=1.1 x 10(-10)). We finally searched for association between SNPs within the FRMD4A locus and A beta plasma concentrations in three independent non-demented populations (n = 2579). We reported that polymorphisms were associated with plasma A beta 42/A beta 40 ratio (best signal, P=5.4 x 10(-7)). In conclusion, combining both GWHA study and a conservative three-stage replication approach, we characterised FRMD4A as a new genetic risk factor of AD.
  •  
28.
  •  
29.
  •  
30.
  •  
31.
  • Mahajan, Anubha, et al. (författare)
  • Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus.
  • 2015
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.
  •  
32.
  •  
33.
  •  
34.
  •  
35.
  •  
36.
  • Almkvist, O, et al. (författare)
  • Mild cognitive impairment -- An early stage of Alzheimer´s disease?
  • 1998
  • Ingår i: Journal of Neural Transmission. ; 53, s. 21-29
  • Tidskriftsartikel (refereegranskat)abstract
    • The hypothesis that mild cognitive impairment (MCI) represents an early stage of Alzheimer´s disease (AD) was investigated by reviewing recent research from three sources: asymptomatic and symptomatic individuals carrying mutations that cause AD; hospital
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  •  
41.
  • Bronge, L, et al. (författare)
  • White matter lesions in Alzheimer patients are influenced by apolipoprotein E genotype
  • 1999
  • Ingår i: Dementia and geriatric cognitive disorders. - : S. Karger AG. - 1420-8008 .- 1421-9824. ; 10:2, s. 89-96
  • Tidskriftsartikel (refereegranskat)abstract
    • To analyse the influence of apolipoprotein E (APOE) genotype on the extent of white matter lesions (WMLs) in Alzheimer’s disease (AD), we examined 60 AD patients with magnetic resonance imaging. The WMLs were rated visually in different brain regions. The patients with the APOE genotype σ4/4 had more extensive WMLs in the deep white matter than patients with genotypes σ3/3 and σ3/4. There was a correlation with age for WMLs in the deep white matter in patients with the APOE σ3/3 genotype. In patients carrying at least one σ4 allele, the WMLs showed no age correlation. The results could imply that in APOE allele σ4 carriers, the WMLs represent a pathological process related to the aetiology of the disease.
  •  
42.
  •  
43.
  • Corder, EH, et al. (författare)
  • The role of APOE polymorphisms in late-onset dementias
  • 1998
  • Ingår i: Cellular and molecular life sciences : CMLS. - : Springer Science and Business Media LLC. - 1420-682X .- 1420-9071. ; 54:9, s. 928-934
  • Tidskriftsartikel (refereegranskat)
  •  
44.
  • Faux, Noel G, et al. (författare)
  • PBT2 Rapidly Improves Cognition in Alzheimer's Disease : Additional Phase II Analyses
  • 2010
  • Ingår i: Journal of Alzheimer's Disease. - 1387-2877 .- 1875-8908. ; 20:2, s. 509-516
  • Tidskriftsartikel (refereegranskat)abstract
    • PBT2 is a copper/zinc ionophore that rapidly restores cognition in mouse models of Alzheimer's disease (AD). A recent Phase IIa double-blind, randomized, placebo-controlled trial found that the 250 mg dose of PBT2 was well-tolerated, significantly lowered cerebrospinal fluid (CSF) levels of amyloid-beta_{42}, and significantly improved executive function on a Neuro-psychological Test Battery (NTB) within 12 weeks of treatment in patients with AD. In the post-hoc analysis reported here, the cognitive, blood marker, and CSF neurochemistry outcomes from the trial were subjected to further analysis. Ranking the responses to treatment after 12 weeks with placebo, PBT2 50 mg, and PBT2 250 mg revealed that the proportions of patients showing improvement on NTB Composite or Executive Factor z-scores were significantly greater in the PBT2 250 mg group than in the placebo group. Receiver-operator characteristic analyses revealed that the probability of an improver at any level coming from the PBT2 250 mg group was significantly greater, compared to placebo, for Composite z-scores (Area Under the Curve [AUC] =0.76, p=0.0007), Executive Factor z-scores (AUC =0.93, p=1.3 x 10;{-9}), and near-significant for the ADAS-cog (AUC =0.72, p=0.056). There were no correlations between changes in CSF amyloid-beta or tau species and cognitive changes. These findings further encourage larger-scale testing of PBT2 for AD.
  •  
45.
  • Forsberg, Lars A., et al. (författare)
  • Age-related somatic structural changes in the nuclear genome of human blood cells
  • 2012
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 90:2, s. 217-228
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural variations are among the most frequent interindividual genetic differences in the human genome. The frequency and distribution of de novo somatic structural variants in normal cells is, however, poorly explored. Using age-stratified cohorts of 318 monozygotic (MZ) twins and 296 single-born subjects, we describe age-related accumulation of copy-number variation in the nuclear genomes in vivo and frequency changes for both megabase- and kilobase-range variants. Megabase-range aberrations were found in 3.4% (9 of 264) of subjects ≥60 years old; these subjects included 78 MZ twin pairs and 108 single-born individuals. No such findings were observed in 81 MZ pairs or 180 single-born subjects who were ≤55 years old. Recurrent region- and gene-specific mutations, mostly deletions, were observed. Longitudinal analyses of 43 subjects whose data were collected 7-19 years apart suggest considerable variation in the rate of accumulation of clones carrying structural changes. Furthermore, the longitudinal analysis of individuals with structural aberrations suggests that there is a natural self-removal of aberrant cell clones from peripheral blood. In three healthy subjects, we detected somatic aberrations characteristic of patients with myelodysplastic syndrome. The recurrent rearrangements uncovered here are candidates for common age-related defects in human blood cells. We anticipate that extension of these results will allow determination of the genetic age of different somatic-cell lineages and estimation of possible individual differences between genetic and chronological age. Our work might also help to explain the cause of an age-related reduction in the number of cell clones in the blood; such a reduction is one of the hallmarks of immunosenescence.
  •  
46.
  •  
47.
  •  
48.
  •  
49.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 204
Typ av publikation
tidskriftsartikel (177)
konferensbidrag (25)
rapport (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (169)
övrigt vetenskapligt/konstnärligt (35)
Författare/redaktör
Lannfelt, L (173)
Lannfelt, Lars (43)
Basun, H (39)
Winblad, B (35)
Wahlund, LO (27)
Axelman, K (25)
visa fler...
Viitanen, M (24)
Ingelsson, Martin (17)
FORSELL, C (17)
Almkvist, O (16)
Lind, Lars (15)
Hardy, J (15)
Cowburn, RF (13)
Jensen, M (12)
Gudnason, V (11)
BOGDANOVIC, N (11)
Launer, LJ (10)
Fratiglioni, L (10)
Boerwinkle, E (10)
Nordberg, A (9)
Groop, Leif (9)
Bis, JC (9)
Smith, AV (9)
Hofman, A (9)
Psaty, BM (9)
Rotter, JI (9)
Ingelsson, Erik (9)
Blennow, Kaj, 1958 (8)
Salomaa, Veikko (8)
Melander, Olle (8)
Linneberg, Allan (8)
Lehtimaki, T. (8)
Ingelsson, M (8)
Schmidt, H. (7)
Pedersen, NL (7)
van Duijn, CM (7)
Tuomi, Tiinamaija (7)
Schmidt, R (7)
Uitterlinden, AG (7)
McCarthy, Mark I (7)
Grarup, Niels (7)
Pedersen, Oluf (7)
Hansen, Torben (7)
Langenberg, Claudia (7)
Boehnke, Michael (7)
Mohlke, Karen L (7)
Tuomilehto, Jaakko (7)
Mahajan, Anubha (7)
Lind, L (7)
Palmer, Colin N. A. (7)
visa färre...
Lärosäte
Karolinska Institutet (171)
Uppsala universitet (65)
Lunds universitet (17)
Göteborgs universitet (13)
Umeå universitet (9)
Stockholms universitet (8)
visa fler...
Högskolan i Gävle (3)
Södertörns högskola (2)
Handelshögskolan i Stockholm (1)
Högskolan Dalarna (1)
Marie Cederschiöld högskola (1)
visa färre...
Språk
Engelska (203)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (45)
Naturvetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy