SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lanphear Bruce P.) "

Search: WFRF:(Lanphear Bruce P.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bennett, Deborah, et al. (author)
  • Project TENDR : Targeting Environmental Neuro-Developmental Risks. The TENDR Consensus Statement
  • 2016
  • In: Journal of Environmental Health Perspectives. - : National Institute of Environmental Health Science. - 0091-6765 .- 1552-9924. ; 124:7, s. A118-A122
  • Journal article (peer-reviewed)abstract
    • Children in America today are at an unacceptably high risk of developing neurodevelopmental disorders that affect the brain and nervous system including autism, attention deficit hyperactivity disorder, intellectual disabilities, and other learning and behavioral disabilities. These are complex disorders with multiple causes-genetic, social, and environmental. The contribution of toxic chemicals to these disorders can be prevented. Approach: Leading scientific and medical experts, along with children's health advocates, came together in 2015 under the auspices of Project TENDR: Targeting Environmental Neuro-Developmental Risks to issue a call to action to reduce widespread exposures to chemicals that interfere with fetal and children's brain development. Based on the available scientific evidence, the TENDR authors have identified prime examples of toxic chemicals and pollutants that increase children's risks for neurodevelopmental disorders. These include chemicals that are used extensively in consumer products and that have become widespread in the environment. Some are chemicals to which children and pregnant women are regularly exposed, and they are detected in the bodies of virtually all Americans in national surveys conducted by the U.S. Centers for Disease Control and Prevention. The vast majority of chemicals in industrial and consumer products undergo almost no testing for developmental neurotoxicity or other health effects. Conclusion: Based on these findings, we assert that the current system in the United States for evaluating scientific evidence and making health-based decisions about environmental chemicals is fundamentally broken. To help reduce the unacceptably high prevalence of neurodevelopmental disorders in our children, we must eliminate or significantly reduce exposures to chemicals that contribute to these conditions. We must adopt a new framework for assessing chemicals that have the potential to disrupt brain development and prevent the use of those that may pose a risk. This consensus statement lays the foundation for developing recommendations to monitor, assess, and reduce exposures to neurotoxic chemicals. These measures are urgently needed if we are to protect healthy brain development so that current and future generations can reach their fullest potential.
  •  
2.
  • Doherty, Brett T, et al. (author)
  • Maternal, cord, and three-year-old child serum thyroid hormone concentrations in the Health Outcomes and Measures of the Environment study
  • 2020
  • In: Clinical Endocrinology. - : Blackwell Science Ltd.. - 0300-0664 .- 1365-2265. ; 92:4, s. 366-372
  • Journal article (peer-reviewed)abstract
    • PURPOSE: Maternal thyroid function during pregnancy may influence offspring thyroid function, though relations between maternal and child thyroid function are incompletely understood. We sought to characterize relations between maternal, cord and child thyroid hormone concentrations in a population of mother-child pairs with largely normal thyroid function.METHODS: In a prospective birth cohort, we measured thyroid hormone concentrations in 203 mothers at 16 gestational weeks, 273 newborns and 159 children at 3 years among participants in the Health Outcomes and Measures of the Environment (HOME) Study. We used multivariable linear regression to estimate associations of maternal thyroid hormones during pregnancy with cord serum thyroid hormones and also estimated associations of maternal and cord thyroid hormones with child thyroid-stimulating hormone (TSH).RESULTS: Each doubling of maternal TSH was associated with a 16.4% increase of newborn TSH (95% CI: 3.9%, 30.5%), and each doubling of newborn TSH concentrations was associated with a 10.4% increase in child TSH concentrations at 3 years (95% CI: 0.1%, 21.7%). An interquartile range increase in cord FT4 concentrations was associated with an 11.7% decrease in child TSH concentrations at 3 years (95% CI: -20.2%, -2.3%).CONCLUSIONS: We observed relationships between maternal, newborn and child thyroid hormone concentrations in the HOME Study. Our study contributes to understandings of interindividual variability in thyroid function among mother-child pairs, which may inform future efforts to identify risk factors for thyroid disorders or thyroid-related health outcomes.
  •  
3.
  •  
4.
  • Lebeaux, Rebecca M, et al. (author)
  • Maternal serum perfluoroalkyl substance mixtures and thyroid hormone concentrations in maternal and cord sera : The HOME Study
  • 2020
  • In: Environmental Research. - : Elsevier. - 0013-9351 .- 1096-0953. ; 185
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are ubiquitous. Previous studies have found associations between PFAS and thyroid hormones in maternal and cord sera, but the results are inconsistent. To further address this research question, we used mixture modeling to assess the associations with individual PFAS, interactions among PFAS chemicals, and the overall mixture.METHODS: We collected data through the Health Outcomes and Measures of the Environment (HOME) Study, a prospective cohort study that between 2003 and 2006 enrolled 468 pregnant women and their children in the greater Cincinnati, Ohio region. We assessed the associations of maternal serum PFAS concentrations measured during pregnancy with maternal (n = 185) and cord (n = 256) sera thyroid stimulating hormone (TSH), total thyroxine (TT4), total triiodothyronine (TT3), free thyroxine (FT4), and free triiodothyronine (FT3) using two mixture modeling approaches (Bayesian kernel machine regression (BKMR) and quantile g-computation) and multivariable linear regression. Additional models considered thyroid autoantibodies, other non-PFAS chemicals, and iodine deficiency as potential confounders or effect measure modifiers.RESULTS: PFAS, considered individually or as mixtures, were generally not associated with any thyroid hormones. A doubling of perfluorooctanesulfonic acid (PFOS) had a positive association with cord serum TSH in BKMR models but the 95% Credible Interval included the null (β = 0.09; 95% CrI: -0.08, 0.27). Using BKMR and multivariable models, we found that among children born to mothers with higher thyroid peroxidase antibody (TPOAb), perfluorooctanoic acid (PFOA), PFOS, and perfluorohexanesulfonic acid (PFHxS) were associated with decreased cord FT4 suggesting modification by maternal TPOAb status.CONCLUSIONS: These findings suggest that maternal serum PFAS concentrations measured in the second trimester of pregnancy are not strongly associated with thyroid hormones in maternal and cord sera. Further analyses using robust mixture models in other cohorts are required to corroborate these findings.
  •  
5.
  • Vuong, Ann M., et al. (author)
  • Maternal Polybrominated Diphenyl Ether (PBDE) Exposure and Thyroid Hormones in Maternal and Cord Sera : The HOME Study, Cincinnati, USA
  • 2015
  • In: Journal of Environmental Health Perspectives. - : National Institute of Environmental Health Science. - 0091-6765 .- 1552-9924. ; 123:10, s. 1079-1085
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Polybrominated diphenyl ethers (PBDEs) reduce blood concentrations of thyroid hormones in laboratory animals, but it is unclear whether PBDEs disrupt thyroid hormones in pregnant women or newborn infants.OBJECTIVES: We investigated the relationship between maternal PBDE levels and thyroid hormone concentrations in maternal and cord sera.METHODS: We used data from the Health Outcomes and Measures of the Environment (HOME)Study, a prospective birth cohort of 389 pregnant women in Cincinnati, Ohio, who were enrolled from 2003 through 2006 and delivered singleton infants. Maternal serum PBDE concentrations were measured at enrollment (16 ± 3 weeks of gestation). Thyroid hormone concentrations were measured in maternal serum at enrollment (n = 187) and in cord serum samples (n = 256).RESULTS: Median maternal serum concentrations of BDEs 28 and 47 were 1.0 and 19.1 ng/g lipid, respectively. A 10-fold increase in BDEs 28 and 47 concentrations was associated with a 0.85-μg/dL [95% confidence interval (CI): 0.05, 1.64] and 0.82-μg/dL (95% CI: 0.12, 1.51) increase in maternal total thyroxine concentrations (TT4), respectively. Both congeners were also positively associated with maternal free thyroxine (FT4). We also observed positive associations between BDE-47 and maternal total and free triiodothyronine (TT3 and FT3). A 10-fold increase in BDE-28 was associated with elevated FT3 concentrations (β = 0.14 pg/mL; 95% CI: 0.02, 0.26). In contrast, maternal PBDE levels were not associated with thyroid hormone concentrations in cord serum.CONCLUSIONS: These findings suggest that maternal PBDE exposure, particularly BDEs 28 and 47, are associated with maternal concentrations of T4 and T3 during pregnancy.
  •  
6.
  • Vuong, Ann M., et al. (author)
  • Polybrominated diphenyl ether (PBDE) exposures and thyroid hormones in children at age 3 years
  • 2018
  • In: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 117, s. 339-347
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Polybrominated diphenyl ethers (PBDEs) reduce serum thyroid hormone concentrations in animal studies, but few studies have examined the impact of early-life PBDE exposures on thyroid hormone disruption in childhood.METHODS: We used data from 162 mother-child pairs from the Health Outcomes and Measures of the Environment Study (2003-2006, Cincinnati, OH). We measured PBDEs in maternal serum at 16 ± 3 weeks gestation and in child serum at 1-3 years. Thyroid hormones were measured in serum at 3 years. We used multiple informant models to investigate associations between prenatal and early-life PBDE exposures and thyroid hormone levels at age 3 years.RESULTS: Prenatal PBDEs were associated with decreased thyroid stimulating hormone (TSH) levels at age 3 years. A 10-fold increase in prenatal ∑PBDEs (BDE-28, -47, -99, -100, and -153) was associated with a 27.6% decrease (95% CI -40.8%, -11.3%) in TSH. A ten-fold increase in prenatal ∑PBDEs was associated with a 0.25 pg/mL (0.07, 0.43) increase in free triiodothyronine (FT3). Child sex modified associations between prenatal PBDEs and thyroid hormones, with significant decrements in TSH among females and decreased free T4 (FT4) in males. Prenatal ∑PBDEs were not associated with TT4, FT4, or total T3.CONCLUSIONS: These findings suggest an inverse relationship between prenatal ∑PBDEs and TSH at 3 years. Associations may be sexually dimorphic, with an inverse relationship between prenatal BDE-47 and -99 and TSH in females and null associations among males.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view