SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsen Ulrik 1972) "

Sökning: WFRF:(Larsen Ulrik 1972)

  • Resultat 1-33 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andreasen, J. G., et al. (författare)
  • Design and optimization of a novel organic Rankine cycle with improved boiling process
  • 2015
  • Ingår i: Energy. - : Elsevier BV. - 0360-5442. ; 91, s. 48-59
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we present a novel organic Rankine cycle layout, named the organic split-cycle, designed for utilization of low grade heat. The cycle is developed by implementing a simplified version of the split evaporation concept from the Kalina split-cycle in the organic Rankine cycle in order to improve the boiling process. Optimizations are carried out for eight hydrocarbon mixtures for hot fluid inlet temperatures at 120 °C and 90 °C, using a genetic algorithm to determine the cycle conditions for which the net power output is maximized. The most promising mixture is an isobutane/pentane mixture which, for the 90 °C hot fluid inlet temperature case, achieves a 14.5% higher net power output than an optimized organic Rankine cycle using the same mixture. Two parameter studies suggest that optimum conditions for the organic split-cycle are when the temperature profile allows the minimum pinch point temperature difference to be reached at two locations in the boiler. Compared to the transcritical organic Rankine cycle, the organic split-cycle improves the boiling process without an entailing increase in the boiler pressure, thus enabling an efficient low grade heat to power conversion at low boiler pressures.
  •  
2.
  • Andreasen, J. G., et al. (författare)
  • Design of organic Rankine cycles using a non-conventional optimization approach
  • 2015
  • Ingår i: Proceedings of ECOS 2015 : 28th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. - 9782955553909
  • Konferensbidrag (refereegranskat)abstract
    • The organic Rankine cycle is a suitable technology for utilizing low grade heat for electricity production. Compared to the traditional steam Rankine cycle, the organic Rankine cycle is beneficial, since it enables the choice of a working fluid which performs better than steam at low heat input temperatures and at lowpower outputs. Selecting the process layout of the organic Rankine cycle and the working fluid are two key design decisions which are critical for the thermodynamic and economic performance of the cycle. The prevailing approach used in the design and optimization of organic Rankine cycles is to model the heatexchangers by assuming a fixed minimum temperature difference. The objective of this work is to assess the applicability of this conventional optimization approach and a non-conventional optimization approach. In thenon-conventional optimization approach a total UA-value (the product of the overall heat transfer coefficient and the heat transfer area) is assigned to the cycle, while the distribution of this total UA-value to each of the heat exchangers is optimized. Optimizations are carried out for three different marine engine waste heatsources at temperatures ranging from 90 °C to 285 °C. The results suggest that the conventional optimization approach is not suitable for estimating the performance potential when the temperature profiles in the heat exchangers are closely matched. This is exemplified for the fluid MDM where the temperature profile of preheating aligns with the heat source fluid and for the zeotropic mixture R32/R134a where the temperature profile of condensation aligns with the cooling water. Furthermore, the conventional optimization approach shows weaknesses in evaluating the feasibility of using a recuperator, when the expander outlet temperature is high. In these cases the non-conventional optimization approach is the more suited methodology for designing organic Rankine cycles.
  •  
3.
  • Andreasen, Jesper Graa, et al. (författare)
  • Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids
  • 2016
  • Ingår i: Energies. - : MDPI AG. - 1996-1073 .- 1996-1073. ; 9:322
  • Tidskriftsartikel (refereegranskat)abstract
    • For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low-temperature heat at 90 ◦C to produce electrical power at around 500 kW. The primary outcomes of the study are Pareto fronts, illustrating the power/cost relations for R32, R134a and R32/R134a (0.65/0.35mole). The results indicate that R32/R134a is the best of these fluids, with 3.4 % higher net power than R32 at the same total cost of 1200 k$.
  •  
4.
  • Andreasen, J. G., et al. (författare)
  • Multi-objective optimization of organic Rankine ycle power plants using pure and mixed working fluids
  • 2015
  • Ingår i: Proceedings of ASME ORC 2015. ; , s. 11-
  • Konferensbidrag (refereegranskat)abstract
    • For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermalphase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cyclepower plants enables a minimization of the mean temperature difference of the heat exchangers whenthe minimum pinch point temperature difference is kept fixed. A low mean temperature differencemeans low heat transfer irreversibilities, which is beneficial for cycle performance, but it also results inlarger heat transfer surface areas. Moreover, the two-phase heat transfer coefficients for zeotropic mixturesare usually degraded compared to an ideal mixture heat transfer coefficient linearly interpolatedbetween the pure fluid values. This entails a need for larger and more expensive heat exchangers. Previousstudies primarily focus on the thermodynamic benefits of zeotropic mixtures by employing firstand second law analyses. In order to assess the feasibility of using zeotropic mixtures, it is, however,important to consider the additional costs of the heat exchangers. In this study, we aim at evaluatingthe economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objectiveoptimization of the net power output and the component costs for organic Rankine cycle power plantsusing low-temperature heat at 90 ◦C to produce electrical power at around 500 kW. The primary outcomesof the study are Pareto fronts, illustrating the power/cost relations for R32, R134a and R32/R134a(0.65/0.35mole). The results indicate that R32/134a is the best of these fluids, with 3.4 % higher net powerthan R32 at the same total cost of 1200 k$.
  •  
5.
  • Andreasen, J. G, et al. (författare)
  • Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles
  • 2014
  • Ingår i: Energy. - 0360-5442. ; 73
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a generic methodology for organic Rankine cycle optimization, where the working fluid is included as an optimization parameter, in order to maximize the net power output of the cycle. The method is applied on two optimization cases with hot fluid inlet temperatures at 120°C and 90°C. Pure fluids and mixtures are compared to see how mixed working fluids affect performance and important design parameters. The results indicate that mixed working fluids can increase the net power output of the cycle, while reducing the pressure levels. The maximum net power output is obtained by fluids with a critical temperature close to half of the hot fluid inlet temperature. For some mixtures we find the maximum net power when the temperature glide of condensation matches the temperature increase of the cooling water, while for other mixtures there are large differences between these two parameters. Ethane is a fluid that obtains a large net power increase when used in mixtures. Compared to pure ethane, an optimized ethane/propane mixture attains a 12.9% net power increase when the hot fluid inlet temperature is 120_C and a 11.1% net power increase when the hot fluid inlet temperature is 90°C.
  •  
6.
  • Baldasso, Enrico, et al. (författare)
  • Prediction of the annual performance of marine organic Rankine cycle power systems
  • 2018
  • Ingår i: ECOS 2018 - Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems.
  • Konferensbidrag (refereegranskat)abstract
    • The increasing awareness about the environmental impact of shipping and the increasingly stricter regulations introduced by the International Maritime Organization are driving the development of solutions to reduce the pollutant emissions from ships. While some previous studies focused on the implementation of a specific technology, others considered a wider perspective and investigated the feasibility of the integration of various technologies on board vessels. Among the screened technologies, organic Rankine cycle (ORC) power systems represent a viable solution to utilize the waste heat contained in the main engine exhaust gases to produce additional power for on board use. The installation of ORC power systems on board ships could result in a reduction of the CO 2 emissions by 5 – 10 %. Although a number of methods to derive the optimal design of ORC units in marine applications have been proposed, these methods are complex, computationally expensive and require specialist knowledge to be included as part of a general optimization procedure to define the optimal set of technologies to be implemented on board a vessel. This study presents a novel method to predict the performance of ORC units installed on board vessels, based upon the characteristics of the main engine exhaust gases and the ship sailing profile. The method is not computationally intensive, and is therefore suitable to be used in the context of large optimization problems, such as holistic optimization and evaluation of a ship performance given the operational profile, weather and route. The model predicted the annual energy production of two case studies with an accuracy within 4 %.
  •  
7.
  • Baldasso, Enrico, et al. (författare)
  • Technical and economic feasibility of organic Rankine cycle-based waste heat recovery systems on feeder ships: Impact of nitrogen oxides emission abatement technologies
  • 2019
  • Ingår i: Energy Conversion and Management. - : Elsevier BV. - 0196-8904. ; 183, s. 577-589
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Maritime Organization recently revised the regulations concerning nitrogen and sulphur oxides emissions from commercial ships. In this context, it is important to investigate how emission abatement technologies capable of meeting the updated regulation on nitrogen oxides emissions affect the performance of waste heat recovery units to be installed on board new vessels. The objective of this paper is to assess the potential fuel savings of installing an organic Rankine cycle unit on board a hypothetical liquefied natural gas-fuelled feeder ship operating inside emission control areas. The vessel complies with the updated legislation on sulphur oxides emissions by using a dual fuel engine. Compliance with the nitrogen oxides emission regulation is reached by employing either a high or low-pressure selective catalytic reactor, or an exhaust gas recirculation unit. A multi-objective optimization was carried out where the objective functions were the organic Rankine cycle unit annual electricity production, the volume of the heat exchangers, and the net present value of the investment. The results indicate that the prospects for attaining a cost-effective installation of an organic Rankine unit are larger if the vessel is equipped with a low-pressure selective catalytic reactor or an exhaust gas recirculation unit. Moreover, the results suggest that the cost-effectiveness of the organic Rankine cycle units is highly affected by fuel price and the waste heat recovery boiler design constraints.
  •  
8.
  • Baldi, Francesco, 1986, et al. (författare)
  • Analysis of the influence of the engine, propeller and auxiliary generation interaction on the energy efficiency of controllable pitch propeller ships
  • 2014
  • Ingår i: International Conference of Maritime Technology.
  • Konferensbidrag (refereegranskat)abstract
    • In a context of increasing requirements for energy efficiency, this paper aims at improving theunderstanding on the interaction between engine, propeller, and auxiliary heat and power generation in theparticular case of controllable pitch propeller (CPP) ships. The case study of a CPP propelled chemical tankeris used to analyze the application of the proposed approach. The performance of the ship’s standardarrangement using a shaft generator for the fulfillment of auxiliary power demand is compared to theoperational alternative of using auxiliary engines, and with the possibilities for retrofitting with frequencyconverters and waste heat recovery systems. The influence of control systems parameters and of sea state arealso analyzed and compared. The results show a large possibility for improvements, both via operationaloptimization (up to 8.3% increased energy efficiency) and via different types of retrofitting (with increasedefficiencies of up to 11.4% for frequency converters, and 16.5% for WHR systems). The influence of a broadoperational envelope brings even larger improvements to the efficiency of the energy system at low speeds. Theresults of the paper provide useful information about the influence of different technologies for auxiliary powergeneration on the efficiency of CPP propelled vessels.
  •  
9.
  • Baldi, Francesco, 1986, et al. (författare)
  • Comparison of different procedures for the optimisation of a combined Diesel engine and organic Rankine cycle system based on ship operational profile
  • 2015
  • Ingår i: Applied Energy. - : Elsevier BV. - 1872-9118 .- 0306-2619. ; 110:Part B, s. 85-93
  • Tidskriftsartikel (refereegranskat)abstract
    • At a time of strong challenges for shipping in relation to economic and environmental performance, the potential of waste heat recovery has been identified as among the most important technologies to lower fuel consumption. This paper presents the comparison of four different procedures for the optimisation of a combined Diesel and organic Rankine cycle system with increasing attention to the ship operational profile and to the inclusion of engine control variables in the optimisation procedure. Measured data from two years of operations of a chemical tanker are used to test the application of the different procedures. The results indicate that for the investigated case study the application of an optimisation procedure which takes the operational profile into account can increase the savings of the installation of an organic Rankine cycle from 7.3% to 11.4% of the original yearly fuel consumption. The results of this study further show that (i) simulating the part-load behavior of the ORC is important to ensure its correct operations at low engine load and (ii) allowing the engine control strategy to be part of the optimisation procedure leads to significantly larger fuel savings than the optimisation of the waste recovery system alone.
  •  
10.
  • Baldi, Francesco, 1986, et al. (författare)
  • Dynamic modelling and analysis of the potential for waste heat recovery on Diesel engine driven applications with a cyclical operational profile
  • 2015
  • Ingår i: Proceedings of ECOS 2015 - The 28th international conference on efficiency, cost, optimisation, simulation and environmental impact of energy systems. - 9782955553909
  • Konferensbidrag (refereegranskat)abstract
    • As the world faces the challenge of the need for decreasing the anthropogenic carbon footprint, thecontinuous economic growth puts additional stress on the need for increased energy systems efficiency. In this context, waste heat recovery is identified as one of the most viable solutions for reducing the fuel consumption of existing systems in transportation.In this paper, we present an analysis of the potential of a waste heat recovery system applied to Diesel engine-driven systems where the operational cycle is dynamic but reducible to a limited number of operational modes. The analysis is applied to a case study for which this operational pattern is of particular relevance: a machine for sugar beet harvesting. The existence of periodical low-load periods forces to bypass the waste heat recovery turbine to avoid water condensation during the expansion. Hence, we propose the use of a thermal inertia to keep the required level of steam superheating during low-loadperiods.The results of the study showed an improvement of 27% in the recoverable exergy of the flow at the heat exchanger cold outlet when the heat exchanger wall thickness was increased from 0.5 mm to 2.5 mm. The results also show that a limited amount of the overall heat exchange inertia contributes to such improvement.
  •  
11.
  • de la Fuente, Santiago Suarez, et al. (författare)
  • Using the forward movement of a container ship navigating in the Arctic to air-cool a marine organic Rankine cycle unit
  • 2018
  • Ingår i: Energy. - : Elsevier BV. - 0360-5442. ; 159, s. 1046-1059
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice coverage in the Arctic is declining, opening up new shipping routes which can drastically reduce voyage lengths between Asia and Europe. There is also a drive to improve ships energy efficiency to meet international emissions design regulations such as the mandated Energy Efficiency Design Index. The organic Rankine cycle is one thermodynamic cycle that is being actively examined to improve the design and operational efficiency of ships. Low heat sink temperatures can significantly increase waste heat recovery systems thermal efficiency. In Arctic regions, the ambient air temperature can be much lower than the sea temperature, presenting interesting opportunities. However, using air as the cooling medium requires larger condensers and power compared to a water-cooled system. This paper investigates the exploitation of the forward movement of a container ship navigating in the Arctic and density-change induced flows as means of moving air through the condenser to reduce the fan power required. The organic Rankine cycle unit uses the waste heat available from the scavenge air to produce electric power. A two-step optimisation method is used with the objective of minimising the annual CO2 emissions of the ship. The results suggest that the supportive cooling could reduce the fan power by up to 60%, depending on ambient air temperature. (C) 2018 Elsevier Ltd. All rights reserved.
  •  
12.
  • Fuente, Santiago Suárez de la, et al. (författare)
  • Using the forward movement of a container ship navigating in the Arctic to air-cool a marine organic Rankine cycle unit
  • 2017
  • Ingår i: Energy Procedia. - : Elsevier BV. - 1876-6102. ; 129, s. 1010-1017
  • Konferensbidrag (refereegranskat)abstract
    • Ice coverage in the Arctic is declining, allowing for new shipping routes. Navigating Rotterdam-Yokohama through the Arctic instead of going through the Suez Canal reduces the travel distance by about 60% thus potentially reducing fuel consumption, CO2 emissions and other pollution factors. It is important to reduce the environmental impact further in the sensitive Artic, and this can be done with a waste heat recovery system (WHRS). Low heat sink temperatures increase the WHRS thermal efficiency substantially and the cold Arctic air presents an attractive opportunity at the cost of increased power consumption due to air moving through the condenser. This paper investigates the exploitation of the forward movement of a container ship navigating in the Arctic Circle and density-change induced flow as means of moving air through the condenser in an organic Rankine cycle (ORC) unit to reduce the fan power required. The ORC unit uses the available waste heat in the scavenge air system to produce electric power. The paper uses a two-step optimisation method with the objective of minimising the ship’s annual CO2 emissions. The results suggest that using the supportive cooling could reduce the fan power by up to 60%, depending on the ambient air temperature.
  •  
13.
  • Fuente, Santiago Suárezde la, et al. (författare)
  • Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region
  • 2017
  • Ingår i: Energy. - : Elsevier BV. - 0360-5442. ; 141, s. 975-990
  • Tidskriftsartikel (refereegranskat)abstract
    • As Arctic sea ice coverage declines it is expected that marine traffic could increase in this northern region due to shorter routes. Navigating in the Arctic offers opportunities and challenges for waste heat recovery systems (WHRS). Lower temperatures require larger heating power on board, hence a larger demand for waste heat usage, to cover services and maintaining on board spaces temperatures. However, a lower heat rejection temperature increases the WHRS thermal efficiency. The air temperature for the Arctic route selected is colder than that of the seawater, opening the opportunity of having air as coolant. This paper explores the use of two different coolants, air and seawater, for an organic Rankine cycle (ORC) unit using the available waste heat in the scavenge air system of a container ship navigating in Arctic Circle. Using a two-step single objective optimisation process, detailed models of air and seawater heat exchangers are evaluated as the WHRS condensers. The results suggest that an ORC unit using R1233zd(E) as its working fluid coupled with seawater as its coolant is the preferable option to reduce CO2 emissions. Using the ambient air as the coolant while a less effective option could be cheaper to instal
  •  
14.
  • Larsen, Ulrik, 1972, et al. (författare)
  • A comparison of advanced heat recovery power cycles in a combined cycle for large ships
  • 2014
  • Ingår i: Energy. - : Elsevier BV. - 0360-5442. ; 74
  • Tidskriftsartikel (refereegranskat)abstract
    • Strong motivation exists within the marine sector to reduce fuel expenses and to comply with ever stricter emission regulations. Heat recovery can address both of these issues. The ORC (organic Rankine cycle), the Kalina cycle and the steam Rankine cycle have received the majority of the focus in the literature. In the present work we compare these cycles in a combined cycle application with a large marine two-stroke diesel engine. We present an evaluation of the efficiency and the environmental impact, safety concerns and practical aspects of each of the cycles. A previously validated numerical engine model is combined with a turbocharger model and bottoming cycle models written in Matlab. Genetic algorithm optimisation results suggest that the Kalina cycle possess no significant advantages compared to the ORC or the steam cycle. While contributing to very high efficiencies, the organic working fluids possess high global warming potentials and hazard levels. It is concluded that the ORC has the greatest potential for increasing the fuel efficiency, and the combined cycle offers very high thermal efficiency. While being less efficient, the steam cycle has the advantages of being well proven, harmless to the environment as well as being less hazardous in comparison.
  •  
15.
  • Larsen, Ulrik, 1972 (författare)
  • Design and modelling of innovative machinery systems for large ships
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Eighty percent of the growing global merchandise trade is transported by sea. The shipping industry is required to reduce the pollution and increase the energy efficiency of ships in the near future. There is a relatively large potential for approaching these requirements by implementing waste heat recovery (WHR) systems.Studies of alternative WHR systems in other applications suggests that the Kalina cycle and the organic Rankine cycle (ORC) can provide significant advantages over the steam Rankine cycle, which is currently used for marine WHR.This thesis aims at creating a better understanding of the Kalina cycle and the ORC in the application on board large ships; the thermodynamic performances of the mentioned power cycles are compared. Recommendations of suitable system layouts and working fluids for the marine applications are provided along with methodologies useful for the design and optimisation of the main engine and WHR system combined cycle.Numerical models of a low-speed two-stroke diesel engine, turbochargers, and the mentioned types of WHR systems in various configurations, are used to achieve the mentioned objectives. The main engine is simulated using a zero-dimensional model consisting of a two-zone combustion and NOx emission model, a double Wiebe heat release model, the Redlich-Kwong equation of state and the Woschni heat loss correlation. A novel methodology is presented and used to determine the optimum organic Rankine cycle process layout, working fluid and process parameters for marine WHR. Using this mentioned methodology, regression models are derived for the prediction of the maximum obtainable thermal efficiency of ORCs. A unique configuration of the Kalina cycle, the Split-cycle, is analysed to evaluate the fullest potential of the Kalina cycle for the purpose. Integrated with three main engine waste heat streams, the Kalina cycle, the ORC and a dual-pressure steam cycle are compared with regards to the power outputs and other aspects. The part-load performances of four different WHR system configurations, including an exhaust gas recirculation system, are evaluated with regards to the fuel consumption and NOx emissions trade-off.The results of the calibration and validation of the engine model suggest that the main performance parameters can be predicted with adequate accuracies for the overall purpose. The results of the ORC and the Kalina cycle optimisation efforts indicate that both cycles can achieve higher power outputs than the steam cycle; however, the results suggest that for the Kalina cycle to achieve such high power outputs, a relatively complex process layout and high working pressures are required. Conversely, the ORC can achieve superior power outputs with a much simpler process layout in comparison. The toxic ammonia-water working fluid of the Kalina cycle is problematic for the use in marine machinery rooms, and so are the highly flammable ORC working fluids. Based on the analyses, no configuration of the Kalina cycle is recommended for marine WHR. An exhaust gas power turbine is recommended as an initial WHR system investment due its cost-effectiveness. For large ships, a dual-pressure steam cycle is recommended because it is well-known, proven, highly efficient and environmentally benign. The ORC is recommended for large and medium size ships and it is recommended to use the highly flammable working fluids and take the needed precautions. The main reasons are that the ORCs can achieve superior efficiencies with a simple process that can be operated fully automated. For the same reasons a WHR system consisting of a hybrid turbocharger and a recuperated ORC is recommended.
  •  
16.
  • Larsen, Ulrik, 1972, et al. (författare)
  • Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection
  • 2013
  • Ingår i: Energy. - : Elsevier BV. - 0360-5442. ; 55, s. 803-812
  • Tidskriftsartikel (refereegranskat)abstract
    • Power cycles using alternative working fluids are currently receiving significant attention. Selection of working fluid among many candidates is a key topic and guidelines have been presented. A general problem is that the selection is based on numerous criteria, such as thermodynamic performance, boundary conditions, hazard levels and environmental concerns. A generally applicable methodology, based on the principles of natural selection, is presented and used to determine the optimum working fluid, boiler pressure and Rankine cycle process layout for scenarios related to marine engine heat recovery. Included in the solution domain are 109 fluids in sub and supercritical processes, and the process is adapted to the properties of the individual fluid. The efficiency losses caused by imposing process constraints are investigated to help propose a suitable process layout. Hydrocarbon dry type fluids in recuperated processes produced the highest efficiencies, while wet and isentropic fluids were superior in non-recuperated processes. The results suggested that at design point, the requirements of process simplicity, low operating pressure and low hazard resulted in cumulative reductions in cycle efficiency. Furthermore, the results indicated that non-flammable fluids were able to produce near optimum efficiency in recuperated high pressure processes.
  •  
17.
  • Larsen, Ulrik, 1972, et al. (författare)
  • Development of a model for the prediction of the fuel consumption and nitrogen oxides emission trade-off for large ships
  • 2015
  • Ingår i: Energy. - : Elsevier BV. - 0360-5442. ; 80, s. 545-555
  • Tidskriftsartikel (refereegranskat)abstract
    • The international regulations on fuel efficiency and NOx emissions of commercial ships motivate the investigation of new system layouts, which can comply with the regulations. In combustion engines, measures to reduce the fuel consumption often lead to increased NOx emissions and careful consideration of this trade-off mechanism is required in the design of marine propulsion systems. This study investigates five different configurations of two-stroke diesel-based machinery systems for large ships and their influence on the mentioned trade-off. Numerical models of a low-speed two-stroke diesel engine, turbochargers and an ORC (organic Rankine cycle), are used for the optimisation of the NOx andfuel consumption at design and part-load conditions, using a multi-objective genetic algorithm. Moreover, the effects of engine tuning and exhaust gas recirculation are investigated. The results suggest that increased system complexity can lead to lower fuel consumption and NOx. Fuel consumption reductions of up to 9% with a 6.5% NOx reduction were achieved using a hybrid turbocharger and organic Rankinecycle waste heat recovery system.
  •  
18.
  • Larsen, Ulrik, 1972, et al. (författare)
  • Development of a multi-level approach to model and optimise the Kalina Split Cycle
  • 2012
  • Ingår i: Proceedings of the 53rd SIMS conference on Simulation and Modelling.
  • Konferensbidrag (refereegranskat)abstract
    • In the marine sector there is a strong motivation for increasing the propulsion system energy efficiency, mainly because of increasing fuel prices and stricter upcoming emission regulations. The Kalina cycle, based on a mixture of ammonia and water as working fluid, exhibits higher conversion efficiencies than conventional power cycles and could be suitable for this purpose. The Split Cycle technique provides a method to further increase the thermal efficiency, by reducing the thermodynamic losses in the heat recovery system. This is achieved by having two separate streams of different ammonia concentrations entering and leaving a first evaporator stage before being mixed at the inlet of a second evaporator stage. It seems that modelling efforts showing the advantages of the Split Cycle have not been presented in the literature yet. Thus, a thermodynamic model of the Split Cycle is introduced in this work. Modelling and optimisation of the rather complex cycle requires approaching the problem at different system levels. This paper investigates tools and methods suitable for demonstrating the feasibility and advantages of the Split Cycle. The integrated model developed and presented in this paper combines three sub-models all using the NIST REFPROP equations of state: a separator and mixing subsystem model to handle the inherent constraints of the Split Cycle, a component-based model to optimise the heat exchanger operating conditions, and a process model to investigate the complete thermodynamic cycle. Results suggest a 9% net power output increase and 7% higher thermal efficiency compared to the baseline case.
  •  
19.
  • Larsen, Ulrik, 1972, et al. (författare)
  • Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels
  • 2007
  • Ingår i: Society of Automotive Engineering.
  • Konferensbidrag (refereegranskat)abstract
    • The described investigation was carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline vehicle.
  •  
20.
  • Larsen, Ulrik, 1972, et al. (författare)
  • Ethanol as a Future Fuel for Road Transportation: Main report
  • 2009
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Bioethanol as a motor fuel in the transportation sector, mainly for road transportation,has been subject to many studies and much discussion. Furthermore, the topic involvesnot only the application and engine technical aspects, but also the understanding of theentire life cycle of the fuel, well‐to‐wheels, including economical, environmental, andsocial aspects. It is not, however, the aim of this report to assess every single one ofthese aspects. The present report aims to address the technical potential and problemsas well as the central issues related to the general application of bioethanol as anenergy carrier in the near future.
  •  
21.
  • Larsen, Ulrik, 1972, et al. (författare)
  • Expansion of organic Rankine cycle working fluid in a cylinder of a low-speed two-stroke ship engine
  • 2017
  • Ingår i: Energy. - : Elsevier BV. - 0360-5442. ; 119, s. 1212-1220
  • Tidskriftsartikel (refereegranskat)abstract
    • Electricity and power produced from waste heat is particularly relevant in shipping because fuel expenses constitute the majority of the cost of operating the ships; however, the cost-benefit aspect limits the widespread implementation of waste heat recovery power units on ships. This paper presents the thermodynamic analysis of a concept that aims at reducing the cost of an organic Rankine cycle unit by using one of the cylinders in a large diesel engine as expansion device. Numerical models were used to optimise the process parameters and thereby determine the power potential for this concept. The evaluation of 104 working fluids points to cyclopropane, R245fa and R1234ze(z) as the most promising. The results suggest that the power produced by the organic Rankine cycle cylinder is at least equivalent to that of the cylinders operating with the diesel process. This enables potential fuel savings and emissions reductions of about 8.3% in the studied scenario.
  •  
22.
  • Larsen, Ulrik, 1972, et al. (författare)
  • Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles
  • 2014
  • Ingår i: Energy. - 0360-5442. ; 65
  • Tidskriftsartikel (refereegranskat)abstract
    • Much attention is focused on increasing the energy efficiency to decrease fuel costs and CO2 emissions throughout industrial sectors. The ORC (organic Rankine cycle) is a relatively simple but efficient process that can be used for this purpose by converting low and medium temperature waste heat to power. In this study we propose four linear regression models to predict the maximum obtainable thermal efficiency for simple and recuperated ORCs. A previously derived methodology is able to determine the maximum thermal efficiency among many combinations of fluids and processes, given the boundary conditions of the process. Hundreds of optimised cases with varied design parameters are used as observations in four multiple regression analyses. We analyse the model assumptions, prediction abilities and extrapolations, and compare the results with recent studies in the literature. The models are in agreement with the literature, and they present an opportunity for accurate prediction of the potential of an ORC to convert heat sources with temperatures from 80 to 360 C, without detailed knowledge or need for simulation of the process
  •  
23.
  • Larsen, Ulrik, 1972, et al. (författare)
  • System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines
  • 2014
  • Ingår i: Energy. - 0360-5442. ; 64
  • Tidskriftsartikel (refereegranskat)abstract
    • Waste heat recovery systems can produce power from heat without using fuel or emitting CO2, therefore their implementation is becoming increasingly relevant. The Kalina cycle is proposed as an efficient process for this purpose. The main reason for its high efficiency is the non-isothermal phase change characteristics of the ammonia-water working fluid. The present study investigates a unique type of Kalina process called the Split-cycle, applied to the exhaust heat recovery from large marine engines. In the Split-cycle, the working fluid concentration can be changed during the evaporation process in order to improve the match between the heat source and working fluid temperatures. We present a system analysis to identify the governing mechanisms of the process, including a comparison of the efficiency of the Split-cycle and a conventional Kalina cycle and an investigation of the effects of using reheat in both cases. Results of a multi-variable optimisation effort using a genetic algorithm suggest that the Split-cycle process can obtain a thermal efficiency of 23.2% when using reheat compared to 20.8% for a conventional reference Kalina cycle. Reheat can increase the thermal efficiency by 3.4-5.9%. A simplified cost analysissuggests higher purchase costs as result of increased process complexity.
  •  
24.
  • Mondejar, M. E., et al. (författare)
  • A review of the use of organic Rankine cycle power systems for maritime applications
  • 2018
  • Ingår i: Renewable and Sustainable Energy Reviews. - : Elsevier BV. - 1879-0690 .- 1364-0321. ; 91, s. 126-151
  • Forskningsöversikt (refereegranskat)abstract
    • Diesel engines are by far the most common means of propulsion aboard ships. It is estimated that around half of their fuel energy consumption is dissipated as low-grade heat. The organic Rankine cycle technology is a well-established solution for the energy conversion of thermal power from biomass combustion, geothermal reservoirs, and waste heat from industrial processes. However, its economic feasibility has not yet been demonstrated for marine applications. This paper aims at evaluating the potential of using organic Rankine cycle systems for waste heat recovery aboard ships. The suitable vessels and engine heat sources are identified by estimating the total recoverable energy. Different cycle architectures, working fluids, components, and control strategies are analyzed. The economic feasibility and integration on board are also evaluated. A number of research and development areas are identified in order to tackle the challenges limiting a widespread use of this technology in currently operating vessels and new-buildings. The results indicate that organic Rankine cycle units recovering heat from the exhaust gases of engines using low-sulfur fuels could yield fuel savings between 10% and 15%.
  •  
25.
  • Nguyen, Tuong-Van, 1988, et al. (författare)
  • Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications
  • 2014
  • Ingår i: Energy. - 0360-5442. ; 71
  • Tidskriftsartikel (refereegranskat)abstract
    • The Kalina split-cycle is a thermodynamic process for converting thermal energy into electrical power. It uses an ammonia–water mixture as a working fluid (like a conventional Kalina cycle) and has a varying ammonia concentration during the pre-heating and evaporation steps. This second feature results in an improved match between the heat source and working fluid temperature profiles, decreasing the entropy generation in the heat recovery system. The present work compares the thermodynamic performance of this power cycle with the conventional Kalina process, and investigates the impact of varying boundary conditions by conducting an exergy analysis. The design parameters of each configuration were determined by performing a multi-variable optimisation. The results indicate that the Kalina split-cycle with reheat presents an exergetic efficiency by 2.8% points higher than a reference Kalina cycle with reheat, and by 4.3% points without reheat. The cycle efficiency varies by 14% points for a variation of the exhaust gas temperature of 100 °C, and by 1% point for a cold water temperature variation of 30 °C. This analysis also pinpoints the large irreversibilities in the low-pressure turbine and condenser, and indicates a reduction of the exergy destruction by about 23% in the heat recovery system compared to the baseline cycle.
  •  
26.
  • Nielsen, R. F., et al. (författare)
  • Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides
  • 2013
  • Ingår i: Proceedings of ECOS 2013 - The 26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. ; 2013
  • Konferensbidrag (refereegranskat)abstract
    • In order to reduce the formation of acid rain and its harmful effects, stricter legislations on emissions of sulphur oxides from ships applies as of 2015 in emission control areas and globally in 2020 by the international maritime organization (IMO). Consequently, prices on low sulphur fuels are expected to increase drastically compared to those of heavy fuel oil, giving ship owners a strong incentive to find alternative ways of complying with the legislations. In addition, IMO regulations on carbon dioxide emissions and high fuel prices provide incentives for improving the efficiency of the machinery system. The wet sulphuric acid process has shown to be an effective way of removing sulphur oxides from flue gas of land-based coal fired power plants. Moreover, organic Rankine cycles are suitable for heat to power conversion for low temperature heat sources. This paper is aimed at designing and modelling a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. Numerical simulations are carried out using an open source software developed at Technical University of Denmark called Dynamic Network Analysis (DNA). The machinery system suggested in this paper consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal and an advanced waste heat recovery system including a conventional steam Rankine cycle and an organic Rankine cycle. The results are compared with those of a state-of-the-art machinery system featuring a two-stroke diesel engine and a conventional waste heat recovery system. The results suggest that an organic Rankine cycle placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase power generation from waste heat by 32.9% and the combined cycle thermal efficiency by 2.6%. The findings indicates that the technology has an energetic and environmental potential in marine applications, while still further research and development need to be done before it can be put into operation on ships.
  •  
27.
  • Pierobon, L., et al. (författare)
  • Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform
  • 2013
  • Ingår i: Energy. - 0360-5442. ; 58, s. 538-549
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper aims at finding the optimal design of MW-size organic Rankine cycles by employing the multi-objective optimization with the genetic algorithm as the optimizer. We consider three objective functions: thermal efficiency, total volume of the system and net present value. The optimization variables are the working fluid, the turbine inlet pressure and temperature, the condensing temperature, the pinch points and the fluid velocities in the heat exchangers. The optimization process also includes the complete design of the shell and tube heat exchangers utilized in the organic Rankine cycle. The methodology is applied to recover the waste heat from the SGT-500 gas turbine installed on the Draugen off-shore oil and gas platform in the North Sea. Results suggest two optimal working fluids, i.e. acetone and cyclopentane. Thermal efficiency and net present value are higher for cyclopentane than for acetone. Other promising working fluids are cyclohexane, hexane and isohexane. The present methodology can be utilized in waste heat recovery applications where a compromise between performance, compactness and economic revenue is required.
  •  
28.
  • Pierobon, L., et al. (författare)
  • Optimization of Organic Rankine Cycles for Off-Shore Applications
  • 2013
  • Ingår i: Proceedings of ASME Turbo Expo 2013. - 9780791855201 ; 5B, s. 11-
  • Konferensbidrag (refereegranskat)abstract
    • In off-shore oil and gas platform efficiency, the reliability and fuel flexibility are the major concerns when selecting the gas turbine to support the electrical and mechanical demand on the platform. In order to fulfill these requirements, turbine inlet temperature and pressure ratio are not increased up to the optimal values and one or more redundant gas turbines may be employed. With increasing incentives for reducing the CO2 emissions off-shore, improving the thermal efficiency has become a focus area. Due to the peculiar low turbine outlet temperature and due to space and weight constraints, a steam bottoming cycle is not a convenient solution. On the contrary, organic Rankine cycles (ORCs) present the benefits of high simplicity and compactness. Furthermore, the working fluid can be selected considering the temperature profile at which the heat is supplied; hence the heat transfer process and the thermal efficiency of the cycle can be maximized. This paper is aimed at finding the most optimal ORC tailored for off-shore applications using an optimization procedure based on the genetic algorithm. Numerous working fluids are screened through, considering mainly thermal efficiency, but also other characteristics of the fluids, e.g. stability, environmental and human health impacts, and safety issues. Both supercritical and subcritical ORCs are included in the analysis. The optimization procedure is first applied to a conservative ORC where the maximum pressure is limited to 20 bar. Subsequently the optimal working fluid is identified by removing the restriction on the maximum pressure. Different limits on hazards and global warming potential (GWP) are also set. The study is focused on the SGT-500 gas turbine installed on the Draugen platform in the Norwegian Sea. The simulations suggest that, when a high hazard is accepted, cyclohexane is the best solution. With a turbine inlet pressure limit of 20 bar, the combined gas turbine-ORC system presents an efficiency of 43.7%, corresponding to an improvement of 11.9%-points with respect to the gas turbine efficiency. With no upper pressure boundary, cyclohexane at 55.5 bar is the preferable working fluid with a combined thermal efficiency of 44.3%. The supercritical CO2 cycle with a maximum pressure of 192.9 bar is found to be the best alternative if an extremely low hazard is required.
  •  
29.
  • Pierobon, L., et al. (författare)
  • Part-Load Performance of a Wet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator
  • 2014
  • Ingår i: Energies. - : MDPI AG. - 1996-1073 .- 1996-1073. ; 7:12, s. 8294-8316
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the last years, much attention has been paid to the development of efficient and low-cost power systems for biomass-to-electricity conversion. This paper aims at investigating the design-and part-load performance of an innovative plant based on a wet indirectly fired gas turbine (WIFGT) fueled by woodchips and an organic Rankine cycle (ORC) turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable working fluid for the organic Rankine process. This step enables to parametrize the part-load model of the plant and to estimate its performance at different power outputs. The novel plant has a nominal power of 250 kW and a thermal efficiency of 43%. The major irreversibilities take place in the burner, recuperator, compressor and in the condenser. Toluene is the optimal working fluid for the organic Rankine engine. The part-load investigation indicates that the plant can operate at high efficiencies over a wide range of power outputs (50%-100%), with a peak thermal efficiency of 45% at around 80% load. While the ORC turbogenerator is responsible for the efficiency drop at low capacities, the off-design performance is governed by the efficiency characteristics of the compressor and turbine serving the gas turbine unit.
  •  
30.
  • Pierobon, L., et al. (författare)
  • Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle
  • 2013
  • Ingår i: Renewable Energy. - 0960-1481 .- 1879-0682. ; 60, s. 226-234
  • Tidskriftsartikel (refereegranskat)abstract
    • A 100 kWe hybrid plant consisting of gasification system, solid oxide fuel cells and organic Rankine cycle is presented. The nominal power is selected based on cultivation area requirement. For the considered output a land of around 0.5 km2 needs to be utilized. Woodchips are introduced into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells e organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations of state). A genetic algorithm is employed to select the optimal working fluid and the maximum pressure for the bottoming cycle. Thermodynamic and physical properties, environmental impacts and hazard specifications are also considered in the screening process. The results suggest that efficiencies in the region of 54e56% can be achieved. The highest thermal efficiency (56.4%) is achieved with propylcyclohexane at 15.9 bar. A comparison with the available and future technologies for biomass to electricity conversion is carried out. It is shown that the proposed system presents twice the thermal efficiency achieved by simple and double stage organic Rankine cycle plants and around the same efficiency of a combined gasification, solid oxide fuel cells and micro gas turbine plant.
  •  
31.
  • Rasmussen, R. F., et al. (författare)
  • Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides
  • 2014
  • Ingår i: Energy Conversion and Management. - : Elsevier BV. - 0196-8904. ; 85
  • Tidskriftsartikel (refereegranskat)abstract
    • Stricter legislation on sulphur oxide emissions from ships will apply as of 2015 in emission control areas. Consequently, prices on low sulphur fuels are expected to increase drastically, providing a strong incentive to find alternative ways of complying with the legislation and improving the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design and modeling of a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. The system consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal, a conventional steam Rankine cycle and an ORC. Results of numerical modeling efforts suggest that an ORC placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase the combined cycle thermal efficiency by 2.6%. The findings indicate that the technology has potential in marine applications regarding both energy and the environment; however, further research and development efforts are needed.
  •  
32.
  • Risum, Malene, et al. (författare)
  • Introduction of a Comprehensive Diagnostic and Interdisciplinary Management Approach in Haematological Patients with Mucormycosis : A Pre and Post-Intervention Analysis
  • 2020
  • Ingår i: JOURNAL OF FUNGI. - : MDPI. - 2309-608X. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Mucormycosis is a life threatening infection in patients with haematological disease. We introduced a Mucorales-PCR and an aggressive, multidisciplinary management approach for mucormycosis during 2016-2017 and evaluated patient outcomes in 13 patients diagnosed and treated in 2012-2019. Management principle: repeated surgical debridement until biopsies from the resection margins were clean as defined by negative Blankophor microscopy, Mucorales-PCR (both reported within 24 h), and cultures. Cultured isolates underwent EUCAST E.Def 9.3.1 susceptibility testing. Antifungal therapy (AFT) (mono/combination) combined with topical AFT (when possible) was given according to the minimal inhibitory concentration (MIC), severity of the infection, and for azoles, specifically, it was guided by therapeutic drug monitoring. The outcome was evaluated by case record review. All patients underwent surgery guided by diagnostic biopsies from tissue and resection margins (195 samples in total). Comparing 2012-2015 and 2016-2019, the median number of patients of surgical debridements was 3 and 2.5 and of diagnostic samples: microscopy/culture/PCR was 3/3/6 and 10.5/10/10.5, respectively. The sensitivity of microscopy (76%) and Mucorales-PCR (70%) were similar and microscopy was superior to that of culture (53%; p = 0.039). Initial systemic AFT was liposomal amphotericin B (n = 12) or posaconazole (n = 1) given as monotherapy (n = 4) or in combination with isavuconazole/posaconazole (n = 3/6) and terbinafine (n = 3). Nine patients received topical amphotericin B. All received isavuconazole or posaconazole consolidation therapy (n = 13). Mucormycosis related six month mortality was 3/5 in 2012-2015 and 0/7 patients in 2016-2019 (one patient was lost for follow-up). Implementation of combination therapy (systemic+topical AFT/combination systemic AFT) and aggressive surgical debridement guided by optimised diagnostic tests may improve the outcome of mucormycosis in haematologic patients.
  •  
33.
  • Scapping, F., et al. (författare)
  • Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines
  • 2012
  • Ingår i: Applied Thermal Engineering. - : Elsevier BV. - 1359-4311. ; 37, s. 344-352
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone combustion model using ideal gas law equations over a complete crank cycle. The combustion process is divided into intervals, and the product composition and flame temperature are calculated in each interval. The NOx emissions are predicted using the extended Zeldovich mechanism. The model is validated using experimental data from two MAN B&W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can predict specific fuel oil consumption and NOx emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-33 av 33
Typ av publikation
tidskriftsartikel (20)
konferensbidrag (10)
rapport (1)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (31)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Larsen, Ulrik, 1972 (32)
Haglind, F. (19)
Pierobon, L. (13)
Andreasen, J. G. (7)
Nguyen, Tuong-Van, 1 ... (6)
Baldi, Francesco, 19 ... (5)
visa fler...
Haglind, Fredrik (4)
Knudsen, T. (3)
Mondejar, M. E. (3)
Gabrielii, Cecilia, ... (3)
Baldasso, Enrico (2)
Pawling, Rachel (2)
Greig, Alistair (2)
Schramm, J. (2)
Johansen, T (1)
Andersson, Karin, 19 ... (1)
Gylfe, Åsa, 1972- (1)
Andreasen, Jesper Gr ... (1)
Kærn, Martin Ryhl (1)
Kærn, M. R. (1)
Knudsen, Thomas (1)
Kampmann, Peter (1)
Lacour, Stephanie (1)
Danel, Quintan (1)
Ivarsson, A (1)
Ivarsson, Anders (1)
Severinsen, Marianne ... (1)
de la Fuente, Santia ... (1)
Kerdan, Ivan Garcia (1)
Bucknall, Richard (1)
Overgaard, Ulrik Mal ... (1)
Fuente, Santiago Suá ... (1)
Kerdan, Ivan G. (1)
Gregg, Alistair (1)
Fuente, Santiago Suá ... (1)
Kærn, Martin R. (1)
LUNDORFF, P (1)
Nielsen, Ove Juul (1)
Sigthorsson, Oskar (1)
Wronski, Jorrit (1)
Wronski, J. (1)
Munksgaard, Lars (1)
Thern, M. (1)
Rubek, Niclas (1)
Nielsen, R. F. (1)
Elmegaard, B. (1)
Mazzucco, A. (1)
Rokni, M., 1963 (1)
Rasmussen, R. F. (1)
Risum, Malene (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (32)
Umeå universitet (1)
Lunds universitet (1)
Språk
Engelska (33)
Forskningsämne (UKÄ/SCB)
Teknik (32)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy