SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsson Gen) "

Sökning: WFRF:(Larsson Gen)

  • Resultat 1-50 av 55
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Christian (författare)
  • Biobased production of succinic acid by Escherichia coli fermentation
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The prospects of peak oil, climate change and the dependency of fossil carbon have urged research and development of production methods for the manufacture of fuels and chemicals from renewable resources (biomass). The present thesis illustrates different aspects of biobased succinic acid production by a metabolically engineered E. coli strain. The main areas of the thesis are sugar utilisation and feedstock flexibility, and fermentation inhibition, both due to toxic compound derived from the raw material and the fermentation products themselves.The first part of this thesis aimed to investigate the fermentation characteristics of AFP184 in a medium consisting of corn steep liquor, inorganic salts and different sugar sources without supplementation with high-cost nutrients such as yeast extract and peptone. The effects of different sugars, sucrose, glucose, fructose, xylose, equal mixtures of glucose-fructose and glucose-xylose, on succinic acid production kinetics and yields in an industrially relevant medium were investigated. AFP184 was able to utilise all sugars and sugar combinations except sucrose for biomass generation and succinate production. Using glucose resulted in the highest yield, 0.83 (g succinic acid per g sugar consumed anaerobically). Using a high initial sugar concentration resulted in volumetric productivities of almost 3 g L-1 h-1, which is above estimated values for economically feasible production. However, succinic acid production ceased at final concentrations greater than 40 g L-1. To further increase succinic acid concentrations, fermentations using NH4OH, NaOH, KOH, K2CO3, and Na2CO3 as neutralising agents were performed and compared. It was shown that substantial improvements could be made by using alkali bases to neutralise the fermentations. The highest concentrations and productivities were achieved when Na2CO3 was used, 77 g L-1 and 3 g L-1 h-1 respectively. A gradual decrease in succinate productivity was observed during the fermentations, which was shown to be due to succinate accumulation in the broth and not as a result of the addition of neutralising agent or the subsequent increase in osmolarity.To maintain high succinate productivity by keeping a low extracellular succinic acid concentration fermentations were interrupted and cells recovered and resuspended in fresh media. By removing the succinate it was possible to maintain high succinic acid productivity for a prolonged time. Cells subjected to high concentrations of succinate were also able to regain high productivity once transferred into a succinate-free medium.In the last part of the thesis succinic acid production from softwood dilute acid hydrolysates was demonstrated. This study involved establishing the degree of detoxification necessary for growth and fermentation using industrial hydrolysates. Detoxification by treatment with lime and/or activated carbon was investigated and the results show that it was possible to produce succinate from softwood hydrolysates in yields comparable to those for synthetic sugars.The work done in this thesis increases the understanding of succinic acid production with AFP184, illustrate its limitations, and suggests improvements in the current technology with the long term aim of increasing the economical feasibility of biochemical succinic acid production.
  •  
2.
  • Backlund, Emma, et al. (författare)
  • Suppressing glucose uptake and acetic acid production increases membrane protein overexpression in Escherichia coli.
  • 2011
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 10:1, s. 35-
  • Tidskriftsartikel (refereegranskat)abstract
    • The production of integral membrane spanning proteins (IMP's) constitutes a bottleneck in pharmaceutical development. It was long considered that the state-of-the-art was to produce the proteins as inclusion bodies using a powerful induction system. However, the quality of the protein was compromised and the production of a soluble protein that is incorporated into the membrane from which it is extracted is now considered to be a better method. Earlier research has indicated that a slower rate of protein synthesis might overcome the tendency to form inclusion bodies. We here suggest the use of a set of E. coli mutants characterized by a slower rate of growth and protein synthesis as a tool for increasing the amount of soluble protein in high- throughput protein production processes. RESULTS: A set of five IMP's was chosen which were expressed in three mutants and the corresponding WT cell (control). The mutations led to three different substrate uptake rates, two of which were considerably slower than that of the wild type. Using the mutants, we were able to express three out of the five membrane proteins. Most successful was the mutant growing at 50% of the wild type growth rate. A further effect of a low growth rate is a low acetic acid formation, and we believe that this is a possible reason for the better production. This hypothesis was further supported by expression from the BL21(DE3) strain, using the same plasmid. This strain grows at a high growth rate but nevertheless yields only small amounts of acetic acid. This strain was also able to express three out of the five IMP's, although at lower quantities. CONCLUSIONS: The use of mutants that reduce the specific substrate uptake rate seems to be a versatile tool for overcoming some of the difficulties in the production of integral membrane spanning proteins. A set of strains with mutations in the glucose uptake system and with a lower acetic acid formation were able to produce three out of five membrane proteins that it was not possible to produce with the corresponding wild type.
  •  
3.
  • Björlenius, Berndt, 1963- (författare)
  • Pharmaceuticals – improved removal from municipal wastewater and their occurrence in the Baltic Sea
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Pharmaceutical residues are found in the environment due to extensive use in human and veterinary medicine. The active pharmaceutical ingredients (APIs) have a potential impact in non-target organisms. Municipal wastewater treatment plants (WWTPs) are not designed to remove APIs.In this thesis, two related matters are addressed 1) evaluation of advanced treatment to remove APIs from municipal wastewater and 2) the prevalence and degradation of APIs in the Baltic Sea.A stationary pilot plant with nanofiltration (NF) and a mobile pilot plant with activated carbon and ozonation were designed to study the removal of APIs at four WWTPs. By NF, removal reached 90%, but the retentate needed further treatment. A predictive model of the rejection of APIs by NF was developed based on the variables: polarizability, globularity, ratio hydrophobic to polar water accessible surface and charge. The pilot plants with granular and powdered activated carbon (GAC) and (PAC) removed more than 95% of the APIs. Screening of activated carbon products was essential, because of a broad variation in adsorption capacity. Recirculation of PAC or longer contact time, increased the removal of APIs. Ozonation with 5-7 g/m3 ozone resulted in 87-95% removal of APIs. Elevated activity and transcription of biomarkers indicated presence of xenobiotics in regular effluent. Chemical analysis of APIs, together with analysis of biomarkers, were valuable and showed that GAC-filtration and ozonation can be implemented to remove APIs in WWTPs, with decreased biomarker responses.Sampling of the Baltic Sea showed presence of APIs in 41 out of 43 locations. A developed grey box model predicted concentration and half-life of carbamazepine in the Baltic Sea to be 1.8 ng/L and 1300 d respectively.In conclusion, APIs were removed to 95% by GAC or PAC treatment. The additional treatment resulted in lower biomarker responses than today and some APIs were shown to be widespread in the aquatic environment.
  •  
4.
  • Bostrom, M., et al. (författare)
  • Process design for recombinant protein production based on the promoter, P-malK
  • 2004
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 0175-7598 .- 1432-0614. ; 66:2, s. 200-208
  • Tidskriftsartikel (refereegranskat)abstract
    • P-malK is induced through activation of MalT, by the formation of maltotriose and cyclic adenosine monophosphate ( cAMP). The possibility to influence endogenous inducer levels is used to vary the production rates in specifically designed production protocols. Induction based on a batch process protocol on maltose gives low production rates, as the result of a lack of cAMP, which is shown to be of major importance to fully induce this promoter. Two mechanisms are thus used to influence the levels of maltotriose and/or cAMP formation: ( 1) catabolite derepression achieved from low glucose concentration and ( 2) catabolite derepression/inducer exclusion from diauxic growth on glucose/maltose. Fed-batch processes based on limited amounts of glucose result in product accumulation of up to 10% of the total protein. Depending on the feed of limiting glucose, different production profiles are developed. The initial increase in the production rate is due to maltotriose formation from endogenous glycogen degradation while, later in the process, production can be further supported by elevated levels of cAMP, provided the feed rate is sufficiently low. The introduction of maltose after a preceding fed-batch process on glucose can be efficiently used to produce maltotriose in combination with cAMP formation in the event of catabolite derepression. This leads to higher production rates and a further increase in product accumulation of up to 30% of the total protein. The diauxic growth phase resulting from the shift in carbon source can be shortened and even avoided by the design of the preceding feed-rate of glucose. It is postulated that proper design of the inoculum and initial phases of production can reduce basal levels of product formation. With this promoter, the production rate can be as high as 65 units mg(-1) h(-1) and the time to reach a maximal production rate can be designed to take up to 8 h. Furthermore, the duration of the production rate can be as long as 7 h.
  •  
5.
  • Boström, Maria, et al. (författare)
  • Effect of substrate feed rate on recombinant protein secretion, degradation and invlusion body formation in Escherichia coli
  • 2005
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 0175-7598 .- 1432-0614. ; 68:1, s. 82-90
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of changes in substrate feed rate during fedbatch cultivation was investigated with respect to soluble protein formation and transport of product to the periplasm in Escherichia coli. Production was transcribed from the P-malK promoter; and the cytoplasmic part of the production was compared with production from the P-lacUV5 promoter. The fusion protein product, Zb-MalE, was at all times accumulated in the soluble protein fraction except during high-feed-rate production in the cytoplasm. This was due to a substantial degree of proteolysis in all production systems, as shown by the degradation pattern of the product. The product was also further subjected to inclusion body fori-nation. Production in the periplasm resulted in accumulation of the full-length protein; and this production system led to a cellular physiology where the stringent response could be avoided. Furthermore, the secretion could be used to abort the diauxic growth phase resulting from use of the P-malK promoter. At high feed rate, the accumulation of acetic acid, due to overflow metabolism, could furthermore be completely avoided.
  •  
6.
  • Bäcklund, Emma, et al. (författare)
  • Cell engineering of Escherichia coli allows high cell density accumulation without fed-batch process control
  • 2008
  • Ingår i: Bioprocess and biosystems engineering (Print). - : Springer Science and Business Media LLC. - 1615-7591 .- 1615-7605. ; 31:1, s. 11-20
  • Tidskriftsartikel (refereegranskat)abstract
    • A set of mutations in the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) was used to create Escherichia coli strains with a reduced uptake rate of glucose. This allows a growth restriction, which is controlled on cellular rather than reactor level, which is typical of the fed-batch cultivation concept. Batch growth of the engineered strains resulted in cell accumulation profiles corresponding to a growth rate of 0.78, 0.38 and 0.25 h(-1), respectively. The performance of the mutants in batch cultivation was compared to fed-batch cultivation of the wild type cell using restricted glucose feed to arrive at the corresponding growth profiles. Results show that the acetate production, oxygen consumption and product formation were similar, when a recombinant product was induced from the lacUV5 promoter. Ten times more cells could be produced in batch cultivation using the mutants without the growth detrimental production of acetic acid. This allows high cell density production without the establishment of elaborate fed-batch control equipment. The technique is suggested as a versatile tool in high throughput multiparallel protein production but also for increasing the number of experiments performed during process development while keeping conditions similar to the large-scale fed-batch performance.
  •  
7.
  • Bäcklund, Emma, et al. (författare)
  • Fedbatch design for periplasmic product retention in Escherichia coli
  • 2008
  • Ingår i: Journal of Biotechnology. - : Elsevier BV. - 0168-1656 .- 1873-4863. ; 135:4, s. 358-365
  • Tidskriftsartikel (refereegranskat)abstract
    • The feed profile of glucose during fedbatch cultivation could be used to influence the retention of the periplasmic product ZZ-cutinase. An increased feed rate led to a higher production rate but also to an increased specific leakage, which reduced the periplasmic retention. Three growth rates: 0.3, 0.2 and 0.1 h-1 where studied and resulted in 20, 9 and 6%, respectively, of the total ZZ-cutinase accumulating in the medium. It was also shown that leakage during fedbatch production of a Fab fragment was also influenced by the feed rate in a similar manner to ZZ-cutinase. If intracellular product accumulation is desired the advantage of a high productivity, resulting from a high substrate feed rate, is diminished because of a reduced product retention. Biochemical analysis revealed that the growth rate, resulting from a glucose limited feed, influenced the outer membrane protein compositions with respect to OmpF and LamB, whilst OmpA was largely unaffected. As the feed rate increased the amount of total outer membrane protein decreased. When ZZ-cutinase was produced there were further reductions in outer membrane protein accumulation, by 82, 100 and 22% for OmpF, LamB and OmpA, respectively, and the total reduction was almost 60% with a high product formation rate. We suggest that the reduced titre of the outer membrane proteins, OmpF and LamB, may have contributed to a reduced ability for the cell to retain recombinant protein secreted to the periplasm.
  •  
8.
  • Bäcklund, Emma (författare)
  • Growth rate control of periplasmic product retention in Escherichia coli
  • 2008
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The recombinant product is secreted to the periplasm in many processes where E. coli is used as host. One drawback with secretion is the undesired leakage of the periplasmic products to the medium. The aim of this work was to find strategies to influence the periplasmic retention of recombinant products. We have focused on the role of the specific growth rate, a parameter that is usually controlled in industrial bioprocesses. The hypothesis was that the stability of the outer membrane in E. coli is gained from a certain combination of specific phospholipids and fatty acids on one side and the amount and specificity of the outer membrane proteins on the other side, and that the specific growth rate influences this structure and therefore can be used to control the periplasmic retention. We found that is possible to control the periplasmic retention by the growth rate. The leakage of the product increased as the growth rate increased. It was however also found that a higher growth rate resulted in increased productivity. This resulted in equal amounts of product inside the cells regardless of growth rate. We also showed that the growth rate influenced the outer membrane composition with respect to OmpF and LamB while OmpA was largely unaffected. The total amount of outer membrane proteins decreased as the growth rate increased. There were further reductions in outer membrane protein accumulation when the recombinant product was secreted to the periplasm. The lowered amount of outer membrane proteins may have contributed to the reduced ability for the cell to retain the product in the periplasm. The traditional way to control the growth rate is through a feed of substrate in a fed-batch process. In this work we used strains with a set of mutations in the phosphotransferase system (PTS) with a reduced uptake rate of glucose to investigate if these strains could be used for growth rate control in batch cultivations without the use of fed-batch control equipment. The hypothesis was that the lowering of the growth rate on cell level would result in the establishment of fed-batch similar conditions. This study showed that it is possible to control the growth rate in batch cultivations by using mutant strains with a decreased level of substrate uptake rate. The mutants also produced equivalent amounts of acetic acid as the wild type did in fed-batch cultivation with the same growth rate. The oxygen consumption rates were also comparable. A higher cell density was reached with one of the mutants than with the wild type in batch cultivations. It is possible to control the growth rate by the use of the mutants in small-scale batch cultivations without fed-batch control equipment.
  •  
9.
  • Bäcklund, Emma (författare)
  • Impact of glucose uptake rate on recombinant protein production in Escherichia coli
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Escherichia coli (E. coli) is an attractive host for production of recombinant proteins, since it generally provides a rapid and economical means to achieve high product quantities. In this thesis, the impact of the glucose uptake rate on the production of recombinant proteins was studied, aiming at improving and optimising production of recombinant proteins in E. coli. E. coli can be cultivated to high cell densities in bioreactors by applying the fed-batch technique, which offers a means to control the glucose uptake rate. One objective of this study was to find a method for control of the glucose uptake rate in small-scale cultivation, such as microtitre plates and shake flasks. Strains with mutations in the phosphotransferase system (PTS) where used for this purpose. The mutants had lower uptake rates of glucose, resulting in lower growth rates and lower accumulation of acetic acid in comparison to the wild type. By using the mutants in batch cultivations, the formation of acetic acid to levels detrimental to cell growth could be avoided, and ten times higher cell density was reached. Thus, the use of the mutant strains represent a novel, simple alternative to fed-batch cultures.   The PTS mutants were applied for production of integral membrane proteins in order to investigate if the reduced glucose uptake rate of the mutants was beneficial for their production. The mutants were able to produce three out of five integral membrane proteins that were not possible to produce by the wild-type strain. The expression level of one selected membrane protein was increased when using the mutants and the expression level appeared to be a function of strain, glucose uptake rate and acetic acid accumulation. For production purposes, it is not uncommon that the recombinant proteins are secreted to the E. coli periplasm. However, one drawback with secretion is the undesired leakage of periplasmic products to the medium. The leakage of the product to the medium was studied as a function of the feed rate of glucose in fed-batch cultivations and they were found to correlate. It was also shown that the amount of outer membrane proteins was affected by the feed rate of glucose and by secretion of a recombinant product to the periplasm. The cell surface is another compartment where recombinant proteins can be expressed. Surface display of proteins is a potentially attractive production strategy since it offers a simple purification scheme and possibilities for on-cell protein characterisation, and may in some cases also be the only viable option. The AIDA-autotransporter was applied for surface display of the Z domain of staphylococcal protein A under control of the aidA promoter. Z was expressed in an active form and was accessible to the medium. Expression was favoured by growth in minimal medium and it seemed likely that expression was higher at higher feed rates of glucose during fed-batch cultivation. A repetitive batch process was developed, where relatively high cell densities were achieved whilst maintaining a high expression level of Z.
  •  
10.
  •  
11.
  •  
12.
  • Guevara-Martínez, Mónica, 1989-, et al. (författare)
  • Regulating the production of (R)-3-hydroxybutyrate in Escherichia coli by N or P limitation
  • 2015
  • Ingår i: Frontiers in Microbiology. - : Frontiers Research Foundation. - 1664-302X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The chiral compound (R)-3-hydroxybutyrate (3HB) is naturally produced by many wild type organisms as the monomer for polyhydroxybutyrate (PHB). Both compounds are commercially valuable and co-polymeric polyhydroxyalkanoates have been used e.g., in medical applications for skin grafting and as components in pharmaceuticals. In this paper we investigate cultivation strategies for production of 3HB in the previously described E. coil strain AF1000 pJBGT3RX. This strain produces extracellular 3HB by expression of two genes from the PHB pathway of Halomonas boliviensis. H. boliviensis is a newly isolated halophile that forms PHB as a storage compound during carbon excess and simultaneous limitation of another nutrient like nitrogen and phosphorous. We hypothesize that a similar approach can be used to control the flux from acetylCoA to 3HB also in E coli; decreasing the flux to biomass and favoring the pathway to the product. We employed ammonium- or phosphate-limited fed-batch processes for comparison of the productivity at different nutrient limitation or starvation conditions. The feed rate was shown to affect the rate of glucose consumption, respiration, 3HB, and acetic acid production, although the proportions between them were more difficult to affect. The highest 3HB volumetric productivity, 1.5 g L-1 h(-1), was seen for phosphate-limitation.
  •  
13.
  • Guevara-Martínez, Mónica, 1989- (författare)
  • Strain- and bioprocess-design strategies to increase production of (R)-3-hydroxybutyrate by Escherichia coli
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Microbial bio-based processes have emerged as an alternative to replace fossil-based processes for the production of fuels and chemicals. (R)-3-hydroxybutyrate (3HB) is a medium-value chemical that has gained special attention as a precursor of antibiotics and vitamins, as a monomer for the synthesis of tailor-made polyesters and as a nutritional source for eukaryotic cells. By integrating strain and bioprocess-design strategies the work of this thesis has aimed to improve microbial 3HB production by the well-studied platform organism Escherichia coli (strain AF1000) expressing a thiolase and a reductase from Halomonas boliviensis.Uncoupling growth and product formation by NH4+- or PO43-- limited fed-batch cultivations allowed for 3HB titers of 4.1 and 6.8 g L-1 (Paper I). Increasing the NADPH supply by overexpression of glucose-6-phosphate dehydrogenase (zwf) resulted in 1.7 times higher 3HB yield compared to not overexpressing zwf in NH4+ depleted conditions (Paper II). To increase 3HB production in high-cell density cultures, strain BL21 was selected as a low acetate-forming, 3HB-producing platform. BL21 grown in NH4+ limited fed-batch cultivations resulted in 2.3 times higher 3HB titer (16.3 g L-1) compared to strain AF1000 (Paper III). Overexpression of the native E. coli thioesterase “yciA”, identified as the largest contributor in 3HB-CoA hydrolysis, resulted in 2.6 times higher 3HB yield compared to AF1000 not overexpressing yciA. Overexpressing zwf and yciA in NH4+ depleted fed-batch experiments resulted in 2 times higher total 3HB yield (0.210 g g-1) compared to AF1000 only overexpressing zwf (Paper IV). Additionally, using 3HB as a model product, the bacterial artificial chromosome was presented as a simple platform for performing pathway design and optimization in E. coli (Paper V). While directly relevant for 3HB production, these findings also contribute to the knowledge on how to improve the production of a chemical for the development of robust and scalable processes.
  •  
14.
  • Guevara-Martínez, Mónica, 1989-, et al. (författare)
  • The role of the acyl-CoA thioesterase YciA in the production of (R)-3-hydroxybutyrate by recombinant Escherichia coli
  • 2019
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer. - 0175-7598 .- 1432-0614. ; , s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Biotechnologically produced (R)-3-hydroxybutyrate is an interesting pre-cursor for antibiotics, vitamins, and other molecules benefitting from enantioselective production. An often-employed pathway for (R)-3-hydroxybutyrate production in recombinant E. coli consists of three-steps: (1) condensation of two acetyl-CoA molecules to acetoacetyl-CoA, (2) reduction of acetoacetyl-CoA to (R)-3-hydroxybutyrate-CoA, and (3) hydrolysis of (R)-3-hydroxybutyrate-CoA to (R)-3-hydroxybutyrate by thioesterase. Whereas for the first two steps, many proven heterologous candidate genes exist, the role of either endogenous or heterologous thioesterases is less defined. This study investigates the contribution of four native thioesterases (TesA, TesB, YciA, and FadM) to (R)-3-hydroxybutyrate production by engineered E. coli AF1000 containing a thiolase and reductase from Halomonas boliviensis. Deletion of yciA decreased the (R)-3-hydroxybutyrate yield by 43%, whereas deletion of tesB and fadM resulted in only minor decreases. Overexpression of yciA resulted in doubling of (R)-3-hydroxybutyrate titer, productivity, and yield in batch cultures. Together with overexpression of glucose-6-phosphate dehydrogenase, this resulted in a 2.7-fold increase in the final (R)-3-hydroxybutyrate concentration in batch cultivations and in a final (R)-3-hydroxybutyrate titer of 14.3 g L-1 in fed-batch cultures. The positive impact of yciA overexpression in this study, which is opposite to previous results where thioesterase was preceded by enzymes originating from different hosts or where (S)-3-hydroxybutyryl-CoA was the substrate, shows the importance of evaluating thioesterases within a specific pathway and in strains and cultivation conditions able to achieve significant product titers. While directly relevant for (R)-3-hydroxybutyrate production, these findings also contribute to pathway improvement or decreased by-product formation for other acyl-CoA-derived products.
  •  
15.
  • Gustavsson, Martin, 1984-, et al. (författare)
  • Biocatalysis on the surface of Escherichia coli : melanin pigmentation of the cell exterior
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Today, it is considered state-of-the-art to engineer living organisms for various biotechnology applications. Even though this has led to numerous scientific breakthroughs, the enclosed interior of bacterial cells still restricts interactions with enzymes, pathways and products due to the mass-transfer barrier formed by the cell envelope. To promote accessibility, we propose engineering of biocatalytic reactions and subsequent product deposition directly on the bacterial surface. As a proof-of-concept, we used the AIDA autotransporter vehicle for Escherichia coli surface expression of tyrosinase and fully oxidized externally added tyrosine to the biopolymer melanin. This resulted in a color change and creation of a black cell exterior. The capture of ninety percent of a pharmaceutical wastewater pollutant followed by regeneration of the cell bound melanin matrix through a simple pH change, shows the superior function and facilitated processing provided by the surface methodology. The broad adsorption spectrum of melanin could also allow removal of other micropollutants.
  •  
16.
  •  
17.
  • Gustavsson, Martin, et al. (författare)
  • Improved cell surface display of Salmonella enterica serovar Enteritidis antigens in Escherichia coli
  • 2015
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Salmonella enterica serovar Enteritidis (SE) is one of the most potent pathogenic Salmonella serotypes causing food-borne diseases in humans. We have previously reported the use of the β-autotransporter AIDA-I to express the Salmonella flagellar protein H:gm and the SE serotype-specific fimbrial protein SefA at the surface of E. coli as live bacterial vaccine vehicles. While SefA was successfully displayed at the cell surface, virtually no full-length H:gm was exposed to the medium due to extensive proteolytic cleavage of the N-terminal region. In the present study, we addressed this issue by expressing a truncated H:gm variant (H:gmd) covering only the serotype-specific central region. This protein was also expressed in fusion to SefA (H:gmdSefA) to understand if the excellent translocation properties of SefA could be used to enhance the secretion and immunogenicity. Results: H:gmd and H:gmdSefA were both successfully translocated to the E. coli outer membrane as full-length proteins using the AIDA-I system. Whole-cell flow cytometric analysis confirmed that both antigens were displayed and accessible from the extracellular environment. In contrast to H:gm, the H:gmd protein was not only expressed as full-length protein, but it also seemed to promote the display of the protein fusion H:gmdSefA. Moreover, the epitopes appeared to be recognized by HT-29 intestinal cells, as measured by induction of the pro-inflammatory interleukin 8. Conclusions: We believe this study to be an important step towards a live bacterial vaccine against Salmonella due to the central role of the flagellar antigen H:gm and SefA in Salmonella infections and the corresponding immune responses against Salmonella.
  •  
18.
  • Gustavsson, Martin, 1984- (författare)
  • Influence of recombinant passenger properties and process conditions on surface expression using the AIDA-I autotransporter
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Surface expression has attracted much recent interest, and it has been suggested for a variety of applications. Two such applications are whole-cell biocatalysis and the creation of live vaccines. For successful implementation of these applications there is a need for flexible surface expression systems that can yield a high level of expression with a variety of recombinant fusion proteins. The aim of this work was thus to create a surface expression system that would fulfil these requirements. A novel surface expression system based on the AIDA-I autotransporter was created with the key qualities being are good, protein-independent detection of the expression through the presence of two epitope tags flanking the recombinant protein, and full modularity of the different components of the expression cassette. To evaluate the flexibility of this construct, 8 different model proteins with potential use as live-vaccines or biocatalysts were expressed and their surface expression levels were analysed. Positive signals were detected for all of the studied proteins using antibody labelling followed by flow cytometric analysis, showing the functionality of the expression system. The ratio of the signal from the two epitope tags indicated that several of the studied proteins were present mainly in proteolytically degraded forms, which was confirmed by Western blot analysis of the outer membrane protein fraction. This proteolysis was suggested to be due to protein-dependent stalling of translocation intermediates in the periplasm, with indications that larger size and higher cysteine content had a negative impact on expression levels. Process design with reduced cultivation pH and temperature was used to increase total surface expression yield of one of the model proteins by 400 %, with a simultaneous reduction of proteolysis by a third. While not sufficient to completely remove proteolysis, this shows that process design can be used to greatly increase surface expression. Thus, it is recommended that future work combine this with engineering of the bacterial strain or the expression system in order to overcome the observed proteolysis and maximise the yield of surface expressed protein.
  •  
19.
  • Gustavsson, Martin, et al. (författare)
  • Optimisation of surface expression using the AIDA autotransporter
  • 2011
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bacterial surface display is of interest in many applications, including live vaccine development, screening of protein libraries and the development of whole cell biocatalysts. The goal of this work was to understand which parameters result in production of large quantities of cells that at the same time express desired levels of the chosen protein on the cell surface. For this purpose, staphylococcal protein Z was expressed using the AIDA autotransporter in Escherichia coli.Results: The use of an OmpT-negative E. coli mutant resulted in successful expression of the protein on the surface, while a clear degradation pattern was found in the wild type. The expression in the mutant resulted also in a more narrow distribution of the surface anchored protein within the population. Medium optimisation showed that minimal medium with glucose gave more than four times as high expression as LB-medium. Glucose limited fed-batch was used to increase the cell productivity and the highest protein levels were found at the highest feed rates. A maintained high surface expression up to cell dry weights of 18 g l(-1) could also be achieved by repeated glucose additions in batch cultivation where production was eventually reduced by low oxygen levels. In spite of this, the distribution in the bacterial population of the surface protein was narrower using the batch technique.Conclusions: A number of parameters in recombinant protein production were seen to influence the surface expression of the model protein with respect both to the productivity and to the display on the individual cell. The choice of medium and the cell design to remove proteolytic cleavage were however the most important. Both fed-batch and batch processing can be successfully used, but prolonged batch processing is probably only possible if the chosen strain has a low acetic acid production.
  •  
20.
  • Gustavsson, Martin, 1984-, et al. (författare)
  • Surface Expression of omega-Transaminase in Escherichia coli
  • 2014
  • Ingår i: Applied and Environmental Microbiology. - : American Society for Microbiology. - 0099-2240 .- 1098-5336. ; 80:7, s. 2293-2298
  • Tidskriftsartikel (refereegranskat)abstract
    • Chiral amines are important for the chemical and pharmaceutical industries, and there is rapidly growing interest to use transaminases for their synthesis. Since the cost of the enzyme is an important factor for process economy, the use of whole-cell biocatalysts is attractive, since expensive purification and immobilization steps can be avoided. Display of the protein on the cell surface provides a possible way to reduce the mass transfer limitations of such biocatalysts. However, transaminases need to dimerize in order to become active, and furthermore, they require the cofactor pyridoxal phosphate; consequently, successful transaminase surface expression has not been reported thus far. In this work, we produced an Arthrobacter citreus omega-transaminase in Escherichia coli using a surface display vector based on the autotransporter adhesin involved in diffuse adherence (AIDA-I), which has previously been used for display of dimeric proteins. The correct localization of the transaminase in the E. coli outer membrane and its orientation toward the cell exterior were verified. Furthermore, transaminase activity was detected exclusively in the outer membrane protein fraction, showing that successful dimerization had occurred. The transaminase was found to be present in both full-length and proteolytically degraded forms. The removal of this proteolysis is considered to be the main obstacle to achieving sufficient whole-cell transaminase activity.
  •  
21.
  • Gustavsson, Martin, 1984- (författare)
  • Surface expression using the AIDA autotransporter : Towards live vaccines and whole-cell biocatalysis
  • 2011
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The area of surface expression has gathered a lot of interest from research groups all over the world and much work is performed in the area. Autotransporters have been used for surface expression in Gram-negative bacteria. One of the more commonly used autotransporters is the Adhesin Involved in Diffuse Adherence (AIDA) of pathogenic Escherichia coli. The surface expression of enzymes and vaccine epitopes offer several advantages. Surface expressed enzymes gain similar properties to immobilised enzymes, mainly simplified handling and separation using centrifugation. Surface expressed vaccine epitopes can have longer half-lives inside the animal that is to be immunized and surface groups on the host cell can act as adjuvants, increasing the immune response and leading to a better immunisation.    However, while much basic research is directed towards mechanisms of surface expression using autotransporters there are few reports regarding production of surface expressed protein. Thus the aim of this work was the optimisation of the yield and productivity of surface expressed protein. Protein Z, an IgG-binding domain of Staphylococcal protein A, was used as a model protein for the investigation of which cultivation parameters influenced surface expression. The choice of cultivation medium gave the largest impact on expression, which was attributed to effects based on the induction of the native promoter of AIDA. The AIDA system was then used for the expression of two Salmonella surface proteins, SefA and H:gm, with potential for use as vaccine epitopes. SefA was verified located on the cell surface, and H:gm was found in the outer membrane of the host cell, though only in proteolytically truncated forms lacking the His6-tag used for detection. This proteolysis persisted in E. coli strains deficient for the outer membrane protease OmpT and was concluded to be dependent on other proteases. The removal of proteolysis and further optimisation of the yield of surface-expressed protein are important goals of further work.
  •  
22.
  • Hörnström, David, et al. (författare)
  • Molecular optimization of autotransporter-based tyrosinase surface display
  • 2019
  • Ingår i: Biochimica et Biophysica Acta - Biomembranes. - : ELSEVIER SCIENCE BV. - 0005-2736 .- 1879-2642. ; 1862:2, s. 486-494
  • Tidskriftsartikel (refereegranskat)abstract
    • Display of recombinant enzymes on the cell surface of Gram-negative bacteria is a desirable feature with applications in whole-cell biocatalysis, affinity screening and degradation of environmental pollutants. One common technique for recombinant protein display on the Escherichia colt surface is autotransport. Successful autotransport of an enzyme largely depends on the following: (1) the size, sequence and structure of the displayed protein, (2) the cultivation conditions, and (3) the choice of the autotransporter expression system. Common problems with autotransporter-mediated surface display include low expression levels and truncated fusion proteins, which both limit the cell-specific activity. The present study investigated an autotransporter expression system for improved display of tyrosinase on the surface of E. coli by evaluating different variants of the autotransporter vector including: promoter region, signal peptide, the recombinant passenger, linker regions, and the autotransporter translocation unit itself. The impact of these changes on translocation to the cell surface was monitored by the cell-specific activity as well as antibody-based flow cytometric analysis of full-length and degraded passenger. Applying these strategies, the amount of displayed full-length tyrosinase on the cell surface was increased, resulting in an overall 5-fold increase of activity as compared to the initial autotransport expression system. Surprisingly, heterologous expression using 7 different translocation units all resulted in functional expression and only differed 1.6-fold in activity. This study provides a basis for broadening of the range of proteins that can be surface displayed and the development of new autotransporter-based processes in industrial-scale whole-cell biocatalysis.
  •  
23.
  • Jarmander, Johan, 1983-, et al. (författare)
  • A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli
  • 2012
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H: gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag. The goal of the present work was therefore to construct a vector containing elements that facilitates analysis of surface expression, especially for proteins that are sensitive to proteolysis or otherwise difficult to express. Results: The surface expression system pAIDA1 was created with two detection tags flanking the passenger protein. Successful expression of SefA and H:gm on the surface of E. coli was confirmed with fluorescently labeled antibodies specific for the N-terminal His(6)-tag and the C-terminal Myc-tag. While both tags were detected during SefA expression, only the Myc-tag could be detected for H: gm. The negative signal indicates a proteolytic cleavage of this protein that removes the His(6)-tag facing the medium. Conclusions: Expression levels from pAIDA1 were comparable to or higher than those achieved with the formerly used vector. The presence of the Myc- but not of the His(6)-tag on the cell surface during H:gm expression allowed us to confirm the hypothesis that this fusion protein was present on the surface and oriented towards the cell exterior. Western blot analysis revealed degradation products of the same molecular weight for SefA and H:gm. The size of these fragments suggests that both fusion proteins have been cleaved at a specific site close to the C-terminal end of the passenger. This proteolysis was concluded to take place either in the outer membrane or in the periplasm. Since H:gm was cleaved to a much greater extent then the three times smaller SefA, it is proposed that the longer translocation time for the larger H:gm makes it more susceptible to proteolysis.
  •  
24.
  • Jarmander, Johan, et al. (författare)
  • Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli
  • 2015
  • Ingår i: Microbial Cell Factories. - : BioMed Central. - 1475-2859. ; 14:1, s. 51-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundLignocellulosic waste is a desirable biomass for use in second generation biorefineries. Up to 40 % of its sugar content consist of pentoses, which organisms either take up sequentially after glucose depletion, or not at all. A previously described Escherichia coli strain, PPA652ara, capable of simultaneous consumption of glucose, xylose and arabinose was in the present work utilized for production of (R)-3-hydroxybutyric acid (3HB) from a mixture of glucose, xylose and arabinose.ResultsThe Halomonas boliviensis genes for 3HB production were for the first time cloned into E. coli PPA652ara leading to product secretion directly into the medium. Process design was based on comparisons of batch, fed-batch and continuous cultivation, where both excess and limitation of the carbon mixture was studied. Carbon limitation resulted in low specific productivity of 3HB (< 2 mg g-1 h-1) compared to carbon excess (25 mg g-1 h-1), but the yield of 3HB/cell dry weight (Y3HB/CDW) was very low (0.06 g g-1)during excess. Nitrogen-exhausted conditions could be used to sustain a high specific productivity (31 mg g-1 h-1) and to increase the yield of 3HB/cell dry weight to 1.38 g g-1. Nitrogen-limited fed-batch process design lead to further increased specific productivity (38 mg g-1 h-1) but also to additional cell growth (Y3HB/CDW = 0.16 g g-1). Strain PPA652ara did under all processing conditions simultaneously consume glucose, xylose and arabinose, which was not the case for a reference wild type E. coli, which also gave a higher carbon flux to acetic acid.ConclusionsIt was demonstrated that by using the strain E. coli PPA652ara it was possible to design a production process for 3HB from a mixture of glucose, xylose and arabinose where all sugars were consumed. An industrial 3HB production process is proposed to be divided into a growth and a production phase, and nitrogen depletion/limitation is a potential strategy to maximize the yield of 3HB/CDW in the latter. The specific productivity of 3HB by E. coli reported here from glucose, xylose and arabinose is further comparable to the current state of the art for production of 3HB from glucose sources.
  •  
25.
  • Jarmander, Johan, 1983- (författare)
  • Improved detection and performance of surface expression from the AIDA-I autotransporter
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Surface expression of recombinant proteins has attracted a lot of attention due to its potential in applications such as enzyme production, vaccine delivery and bioremediation. Autotransporters have been used for surface expression of a variety of proteins, but the expression systems reported in literature have typically been inflexible and incapable of detecting proteolysis, thereby limiting surface expression yield.In this thesis, a modular surface expression system, utilizing dual tag detection, was therefore created. It was based on the adhesin involved in diffuse adherence (AIDA-I) autotransporter, and was here used to express the model proteins SefA and H:gm on the cell surface of Escherichia coli. Due to the dual tag detection system, proteolysed H:gm could be successfully verified on the cell surface. By optimizing cultivation conditions, surface expression yield of SefA was increased by 300 %, and proteolysis reduced by 33 %. While proteolysis could not be eliminated completely, the work presented in this thesis is a major step towards a general system for surface expression of a wide range of proteins in varied applications.
  •  
26.
  • Jarmander, Johan, et al. (författare)
  • Process optimization for increased yield of surface-expressed protein in Escherichia coli
  • 2014
  • Ingår i: Bioprocess and biosystems engineering (Print). - : Springer Science and Business Media LLC. - 1615-7591 .- 1615-7605. ; 37:8, s. 1685-1693
  • Tidskriftsartikel (refereegranskat)abstract
    • The autotransporter family of Gram-negative protein exporters has been exploited for surface expression of recombinant passenger proteins. While the passenger in some cases was successfully translocated, a major problem has been low levels of full-length protein on the surface due to proteolysis following export over the cytoplasmic membrane. The aim of the present study was to increase the surface expression yield of the model protein SefA, a Salmonella enterica fimbrial subunit with potential for use in vaccine applications, by reducing this proteolysis through process design using Design of Experiments methodology. Cultivation temperature and pH, hypothesized to influence periplasmic protease activity, as well as inducer concentration were the parameters selected for optimization. Through modification of these parameters, the total surface expression yield of SefA was increased by 200 %. At the same time, the yield of full-length protein was increased by 300 %, indicating a 33 % reduction in proteolysis.
  •  
27.
  •  
28.
  • Jarmander, Johan, et al. (författare)
  • Simultaneous Uptake of Lignocellulose- Based Monosaccharides by Escherichia Coli
  • 2014
  • Ingår i: Biotechnology and Bioengineering. - : Wiley. - 0006-3592 .- 1097-0290. ; 111:6, s. 1108-1115
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignocellulosic waste is a naturally abundant biomass and is therefore an attractive material to use in second generation biorefineries. Microbial growth on the monosaccharides present in hydrolyzed lignocellulose is however associated with several obstacles whereof one is the lack of simultaneous uptake of the sugars. We have studied the aerobic growth of Escherichia coli on D-glucose, D-xylose, and L-arabinose and for simultaneous uptake to occur, both the carbon catabolite repression mechanism (CCR) and the AraC repression of xylose uptake and metabolism had to be removed. The strain AF1000 is a MC4100 derivative that is only able to assimilate arabinose after a considerable lag phase, which is unsuitable for commercial production. This strain was successfully adapted to growth on L-arabinose and this led to simultaneous uptake of arabinose and xylose in a diauxic growth mode following glucose consumption. In this strain, a deletion in the phosphoenolpyruvate:phosphotransferase system (PTS) for glucose uptake, the ptsG mutation, was introduced. The resulting strain, PPA652ara simultaneously consumed all three monosaccharides at a maximum specific growth rate of 0.59h(-1), 55% higher than for the ptsG mutant alone. Also, no residual sugar was present in the cultivation medium. The potential of PPA652ara is further acknowledged by the performance of AF1000 during fed-batch processing on a mixture of D-glucose, D-xylose, and L-arabinose. The conclusion is that without the removal of both layers of carbon uptake control, this process results in accumulation of pentoses and leads to a reduction of the specific growth rate by 30%.
  •  
29.
  • Jarmander, Johan (författare)
  • Strategies for improved Escherichia coli bioprocessing performance
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Escherichia coli has a proven track record for successful production of anything from small molecules like organic acids to large therapeutic proteins, and has thus important applications in both R&D and commercial production. The versatility of this organism in combination with the accumulated knowledge of its genome, metabolism and physiology, has allowed for development of specialty strains capable of performing very specific tasks, opening up opportunities within new areas. The work of this thesis has been devoted to alter membrane transport proteins and the regulation of these, in order for E. coli to find further application within two such important areas.The first area was vaccine development, where it was investigated if E. coli could be a natural vehicle for live vaccine production. The hypothesis was that the introduction and manipulation of a protein surface translocation system from pathogenic E. coli would result in stable expression levels of Salmonella subunit antigens on the surface of laboratory E. coli. While different antigen combinations were successfully expressed on the surface of E. coli, larger proteins were affected by proteolysis, which manipulation of cultivation conditions could reduce, but not eliminate completely. The surface expressed antigens were further capable of inducing proinflammatory responses in epithelial cells.The second area was biorefining. By altering the regulation of sugar assimilation, it was hypothesized that simultaneous uptake of the sugars present in lignocellulose hydrolyzates could be achieved, thereby improving the yield and productivity of important bio-based chemicals. The dual-layered catabolite repression was identified and successfully removed in the engineered E. coli, and the compound (R)-3-hydroxybutyric acid was produced from simultaneous assimilation of glucose, xylose and arabinose.
  •  
30.
  • Kårelid, Victor, 1982-, et al. (författare)
  • Effects of recirculation in a three-tank pilot-scale system for pharmaceutical removal with powdered activated carbon
  • 2017
  • Ingår i: Journal of Environmental Management. - : Elsevier BV. - 0301-4797 .- 1095-8630. ; 193:May, s. 163-Environmental Impact Optimization of Reinforced Concrete Slab Frame Bridges
  • Forskningsöversikt (refereegranskat)abstract
    • The removal of pharmaceutically active compounds by powdered activated carbon (PAC) in municipal wastewater is a promising solution to the problem of polluted recipient waters. Today, an efficient design strategy is however lacking with regard to high-level overall, and specific, substance removal in the large scale. The performance of PAC-based removal of pharmaceuticals was studied in pilot-scale with respect to the critical parameters; contact time and PAC dose using one PAC product selected by screening in bench-scale. The goal was a minimum of 95% removal of the pharmaceuticals present in the evaluated municipal wastewater. A set of 21 pharmaceuticals was selected from an initial 100 due to their high occurrence in the effluent water of two selected wastewater treatment plants (WWTPs) in Sweden, whereof candidates discussed for future EU regulation directives were included. By using recirculation of PAC over a treatment system using three sequential contact tanks, a combination of the benefits of powdered and granular carbon performance was achieved. The treatment system was designed so that recirculation could be introduced to any of the three tanks to investigate the effect of recirculation on the adsorption performance. This was compared to use of the setup, but without recirculation. A higher degree of pharmaceutical removal was achieved in all recirculation setups, both overall and with respect to specific substances, as compared to without recirculation. Recirculation was tested with nominal contact times of 30, 60 and 120 min and the goal of 95% removal could be achieved already at the shortest contact times at a PAC dose of 10–15 mg/L. In particular, the overall removal could be increased even to 97% and 99%, at 60 and 120 min, respectively, when the recirculation point was the first tank. Recirculation of PAC to either the first or the second contact tank proved to be comparable, while a slightly lower performance was observed with recirculation to the third tank. With regards to individual substances, clarithromycin and diclofenac were ubiquitously removed according to the set goal and in contrast, a few substances (fluconazole, irbesartan, memantine and venlafaxine) required specific settings to reach an acceptable removal.
  •  
31.
  • Kårelid, Victor, 1989-, et al. (författare)
  • Pilot-scale removal of pharmaceuticals in municipal wastewater : Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants
  • 2017
  • Ingår i: Journal of Environmental Management. - : Academic Press. - 0301-4797 .- 1095-8630. ; 193:-1, s. 491-502
  • Tidskriftsartikel (refereegranskat)abstract
    • Adsorption with activated carbon is widely suggested as an option for the removal of organic micropollutants including pharmaceutically active compounds (PhACs) in wastewater. In this study adsorption with granular activated carbon (GAC) and powdered activated carbon (PAC) was analyzed and compared in parallel operation at three Swedish wastewater treatment plants with the goal to achieve a 95% PhAC removal. Initially, mapping of the prevalence of over 100 substances was performed at each plant and due to low concentrations a final 22 were selected for further evaluation. These include carbamazepine, clarithromycin and diclofenac, which currently are discussed for regulation internationally. A number of commercially available activated carbon products were initially screened using effluent wastewater. Of these, a reduced set was selected based on adsorption characteristics and cost. Experiments designed with the selected carbons in pilot-scale showed that most products could indeed remove PhACs to the target level, both on total and individual basis. In a setup using internal recirculation the PAC system achieved a 95% removal applying a fresh dose of 15–20 mg/L, while carbon usage rates for the GAC application were much broader and ranged from <28 to 230 mg/L depending on the carbon product. The performance of the PAC products generally gave better results for individual PhACs in regards to carbon availability. All carbon products showed a specific adsorption for a specific PhAC meaning that knowledge of the target pollutants must be acquired before successful design of a treatment system. In spite of different configurations and operating conditions of the different wastewater treatment plants no considerable differences regarding pharmaceutical removal were observed.
  •  
32.
  • Kårelid, Victor, 1989- (författare)
  • Towards application of activated carbon treatment for pharmaceutical removal in municipal wastewater
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Many pharmaceuticals are found in municipal wastewater effluents due to their persistence in the human body as well as in conventional wastewater treatment processes. This discharge to the environment can lead to adverse effects in aquatic species, such as feminization of male fish. During the past decade, these findings have spawned investigations and research into suitable treatment technologies that could severely limit the discharge. Adsorption onto activated carbon has been identified as one of the two main technologies for implementation of (future) full-scale treatment.Recent research has put a closer focus on adsorption with powdered activated carbon (PAC) than on granular activated carbon (GAC). Studies where both methods are compared in parallel operation are thus still scarce and such evaluation in pilot-scale was therefore a primary objective of this thesis. Furthermore, recirculation of PAC can be used to optimize the treatment regarding the carbon consumption. Such a setup was evaluated as a separate treatment stage to comply with Swedish wastewater convention. Additionally, variation of a set of process parameters was evaluated.During successive operation at three different wastewater treatment plants an overall pharmaceutical removal of 95% could consistently be achieved with both methods. Furthermore, treatment with GAC was sensitive to a degraded effluent quality, which severely reduced the hydraulic capacity. Both treatment methods showed efficient removal of previously highlighted substances, such as carbamazepine and diclofenac, however in general a lower adsorption capacity was observed for GAC. By varying the input of process parameters, such as the continuously added dose or the contact time, during PAC treatment, a responsive change of the pharmaceutical removal could be achieved. The work in this thesis contributes some valuable field experience towards wider application of these treatment technologies in full-scale.
  •  
33.
  •  
34.
  • Larsson, Gen (författare)
  • Challenges in production of recombinant proteins
  • 2008
  • Ingår i: Bioprocess and biosystems engineering (Print). - : Springer Science and Business Media LLC. - 1615-7591 .- 1615-7605. ; 31:1, s. 1-2
  • Tidskriftsartikel (refereegranskat)
  •  
35.
  • Larsson, Gen, et al. (författare)
  • Characterisation of the Escherichia coli membrane during fedbatch cultivation
  • 2004
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 3, s. 9-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Important parameters during recombinant protein production in Escherichia coli, such as productivity and protein activity, are affected by the growth rate. This includes the translocation of protein over the membrane to gain better folding capacity or reduced proteolysis. To vary the growth rate two techniques are available: fedbatch and continuous cultivation, both controlled by the ingoing feed rate. Results: During fedbatch cultivation, E. coli contains phosphatidylethanolamine, phosphatidylglycerol, cardiolipin and saturated fatty acids in amounts which are stable with growth rate. However, the levels of cardiolipin are very high compared to continuous cultivation. The reason for fedbatch triggering of this metabolism is not known but hypothesised to result from an additional need for carbon and energy. The reason could be the dynamic and sometimes rapid changes in growth rate to which the fedbatch cell has at all times to adjust. The membrane flexibility, essential for translocation of various components, is however to some degree sustained by production of increased amounts of unsaturated fatty acids in phosphatidylglycerol. The result is a functionally stiff membrane which generally promotes low cell lysis and is constant with respect to protein leakage to the medium. At comparatively high growth rates, when the further stabilising effect of cyclic fatty acids is gone, the high level of unsaturated fatty acids results in a pronounced effect upon sonication. This is very much in contrast to the membrane function in continuous cultivation which shows very specific characteristics as a function of growth rate. Conclusions: The stiff and unchanging fedbatch membrane should promote a stable behaviour during downstream processing and is less dependent on the time of harvest. However, optimisation of protein leakage can only be achieved in the continuously cultivated cell where leakage is twice as high compared to the constant leakage level in fedbatch. If leakage is undesired, continuous cultivation is also preferred since it can be designed to lead to the lowest values detected. Induction at low growth rate (<0.2 h-1) should be avoided with respect to productivity, in any system, since the specific and total protein production shows their lowest values at this point.
  •  
36.
  • Larsson, Gen, et al. (författare)
  • Endotoxin analysis
  • 2005
  • Patent (populärvet., debatt m.m.)
  •  
37.
  •  
38.
  •  
39.
  •  
40.
  • Li, Gen, et al. (författare)
  • Optimal Open-Loop MIMO Precoder Design
  • 2020
  • Ingår i: IEEE Communications Letters. - : IEEE. - 1089-7798 .- 1558-2558. ; 24:9, s. 2075-2079
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple-input multiple-output (MIMO) is a favorable technique that can improve system capacity and performance through spatial multiplexing. However, the performance gets degraded over the correlated wireless channels. In this letter, we consider a point-to-point MIMO system and jointly optimize both the precoding matrix and the difference between two transmit vectors to resist transmit correlation. The simulation results demonstrate that the proposed method can get average 75% gain comparing with the existing method in terms of the minimum pairwise error probability.
  •  
41.
  • Lindroos, Magnus, et al. (författare)
  • Continuous removal of the model pharmaceutical chloroquine from water using melanin-covered Escherichia coli in a membrane bioreactor
  • 2019
  • Ingår i: Journal of Hazardous Materials. - : ELSEVIER SCIENCE BV. - 0304-3894 .- 1873-3336. ; 365, s. 74-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental release and accumulation of pharmaceuticals and personal care products is a global concern in view of increased awareness of ecotoxicological effects. Adsorbent properties make the biopolymer melanin an interesting alternative to remove micropollutants from water. Recently, tyrosinase-surface-displaying Escherichia coli was shown to be an interesting self-replicating production system for melanin-covered cells for batch-wise absorption of the model pharmaceutical chloroquine. This work explores the suitability of these melanin-covered E. coli for the continuous removal of pharmaceuticals from wastewater. A continuous-flow membrane bioreactor containing melanized E. coli cells was used for adsorption of chloroquine from the influent until saturation and subsequent regeneration. At a low loading of cells (10 g/L) and high influent concentration of chloroquine (0.1 mM), chloroquine adsorbed until saturation after 26 +/- 2 treated reactor volumes (39 +/- 3 L). The average effluent concentration during the first 20 h was 0.0018 mM, corresponding to 98.2% removal. Up to 140 +/- 6 mg chloroquine bound per gram of cells following mixed homo- and heterogeneous adsorption kinetics. In situ low pH regeneration released all chloroquine without apparent capacity loss over three consecutive cycles. This shows the potential of melanized cells for treatment of conventional wastewater or highly concentrated upstream sources such as hospitals or manufacturing sites.
  •  
42.
  • Markland, Katrin (författare)
  • Methodology for high-throughput production of soluble recombinant proteins in Escherichia coli
  • 2007
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The aim of this work was to investigate and determine central parameters that can be used to control and increase the solubility, quality and productivity of recombinant proteins. These central parameters should be applicable under the constraints of high-throughput protein production in Escherichia coli. The present investigation shows that alternative methods exist to improve solubility, quality and productivity of the recombinant protein. The hypothesis is that by reducing the synthesis rate of the recombinant protein, a higher quality protein should be produced. The feed rate of glucose can be used to decrease the synthesis rate of the recombinant protein. The influence of feed rate on solubility and proteolysis was investigated using the lacUV5-promoter and two model proteins, Zb-MalE and Zb-MalE31. Zb-MalE31 is a mutated form of Zb-MalE that contains two different amino acids. These altered amino acids greatly affect the solubility of the protein. The soluble fraction is generally twice as high using Zb-MalE compared to Zb-MalE31. Using a low feed rate compared to high benefits the formation of the full-length soluble protein. Furthermore, by using a low feed rate, the proteolysis can be decreased. One other factor that influences the solubility is the amount of inducer used. An increase from 100 µM to 300 µM IPTG only results in more inclusion bodies being formed, the fraction of soluble protein is the same. The quality aspect of protein production was investigated for a secreted version of Zb-MalE using two different feed rates of glucose and the maltose induced promoter PmalK. It was shown that when the protein was secreted to the periplasm, the stringent response as well as the accumulation of acetic acid (even for high feed rates) was reduced. The stringent response and accumulation of acetic acid are factors that are known to affect the quality and quantity of recombinant proteins. Transporting the protein to the periplasm results in this case on a lower burden on the cell, which leads to less degradation products being formed when the protein is secreted to the periplasm. Seeing the feed rate as a critical parameter, the high-throughput production would benefit from a variation in the feed rate. However, since the fed-batch technique is technically complicated for small volumes another approach is needed. E.coli strains that have been mutated to create an internal growth limitation that simulate fed-batch were cultivated in batch and were compared to the parent strain. It was shown that the growth rate and acetic acid formation was comparable to the parent strain in fed-batch. Furthermore it was shown that a higher cell mass was reached using one of the mutants when the cells were cultivated for as long time as possible. The higher cell mass can be used to reach a higher total productivity.
  •  
43.
  • Mergulhao, F. J. M., et al. (författare)
  • Medium and copy number effects on the secretion of human proinsulin in Escherichia coli using the universal stress promoters uspA and uspB
  • 2003
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 0175-7598 .- 1432-0614. ; 61:06-maj, s. 495-501
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of the uspA and uspB promoters (universal stress promoters) for heterologous protein production in Escherichia coli is described. Best results were obtained with a moderate copy number vector (1560 copies) bearing the uspA promoter, reaching 4.6 mg/g dry cell weight (DCW) of ZZ-proinsulin secreted to the periplasm and 1.9 mg/g DCW secreted to the culture medium. These values are about 1.7-fold higher than those previously reported with the same ZZ fusion tag and the SpA leader peptide showing that these stress promoters are potentially valuable for recombinant protein secretion in E. coli. It is further demonstrated that the use of M9 minimal medium is advantageous for protein secretion as compared to LB rich medium.
  •  
44.
  • Nhan, Nguyen Thanh, et al. (författare)
  • Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus
  • 2011
  • Ingår i: Microbial Cell Factories. - : Springer Science and Business Media LLC. - 1475-2859. ; 10, s. 22-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Salmonella enterica serotype Enteritidis (SE) is considered to be one of the most potent pathogenic Salmonella serotypes causing food-borne disease in humans. Since a live bacterial vaccine based on surface display of antigens has many advantages over traditional vaccines, we have studied the surface display of the SE antigenic proteins, H: gm and SefA in Escherichia coli by the beta-autotransporter system, AIDA. This procedure was compared to protein translocation in Staphylococcus carnosus, using a staphylococci hybrid vector earlier developed for surface display of other vaccine epitopes. Results: Both SefA and H: gm were translocated to the outer membrane in Escherichia coli. SefA was expressed to full length but H: gm was shorter than expected, probably due to a proteolytic cleavage of the N-terminal during passage either through the periplasm or over the membrane. FACS analysis confirmed that SefA was facing the extracellular environment, but this could not be conclusively established for H: gm since the N-terminal detection tag (His(6)) was cleaved off. Polyclonal salmonella antibodies confirmed the sustained antibody-antigen binding towards both proteins. The surface expression data from Staphylococcus carnosus suggested that the H: gm and SefA proteins were transported to the cell wall since the detection marker was displayed by FACS analysis. Conclusion: Apart from the accumulated knowledge and the existence of a wealth of equipment and techniques, the results indicate the selection of E. coli for further studies for surface expression of salmonella antigens. Surface expression of the full length protein facing the cell environment was positively proven by standard analysis, and the FACS signal comparison to expression in Staphylococcus carnosus shows that the distribution of the surface protein on each cell was comparatively very narrow in E. coli, the E. coli outer membrane molecules can serve as an adjuvant for the surface antigenic proteins and multimeric forms of the SefA protein were detected which would probably be positive for the realisation of a strong antigenic property. The detection of specific and similar proteolytic cleavage patterns for both the proteins provides a further starting point for the investigation and development of the Escherichia coli AIDA autotransporter efficiency.
  •  
45.
  • Ortiz-Veizan, Nancy, et al. (författare)
  • Improvements of poly(3-hydroxybutyrate) production in an air-lift reactor using simple production media
  • 2020
  • Ingår i: Bioresources And Bioprocessing. - : Springer. - 2197-4365. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Halomonas boliviensis is a halophilic microorganism that accumulates poly(3-hydroxybutyrate) (PHB) using different carbons sources when nitrogen is depleted from the culture medium. This work presents an improved production of PHB using an air-lift reactor (ALR) that was fed with a concentrated solution of a carbon source, and was supplemented with an adequate airflow rate. Results: Simple production media were used to study PHB production by H. boliviensis in an ALR. Glucose was first used as the main carbon source and was fed during the exponential phase of cell growth. The maximum CDW and PHB content were 31.7 g/L and 51 wt%, respectively, when the airflow rate entering the reactor varied between 0.5 and 1.2 L/min. Changing the air inflow to 0.5-0.9 L/min resulted in an improvement in PHB accumulation (62 wt%). A cultivation was performed by using the latter range of airflow rate and feeding glucose only when nitrogen was depleted from the medium; a considerable enhancement in PHB content (72 wt%) and CDW (27 g/L) was achieved under these conditions. Moreover, PHB was also produced using molasses as the main carbon source. Residual cell mass was about the same to that achieved with glucose, however the PHB content (52 wt%) was lower. Conclusions: PHB production by H. boliviensis in an ALR using a simple medium is possible. CDW and PHB content in H. boliviensis can be improved with respect to batch cultivations previously reported when a carbon source is fed to the reactor. The best strategy for the production of PHB consisted of starting the cultivation in a batch mode while glutamate was present in the medium; glucose should be fed when glutamate is depleted from the medium to keep an excess of the carbon source during the synthesis of PHB.
  •  
46.
  • Perez-Zabaleta, Mariel, 1987-, et al. (författare)
  • Comparison of engineered Escherichia coli AF1000 and BL21 strains for (R)-3-hydroxybutyrate production in fed-batch cultivation
  • 2019
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer. - 0175-7598 .- 1432-0614. ; 103:14, s. 5627-5636
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulation of acetate is a limiting factor in recombinant production of (R)-3-hydroxybutyrate (3HB) by E. coli in high-cell-density processes. To alleviate this limitation, this study investigated two approaches: (i) Deletion of phosphotransacetylase (pta), pyruvate oxidase (poxB) and/or the isocitrate-lyase regulator (iclR), known to decrease acetate formation, on bioreactor cultivations designed to achieve high 3HB concentrations. (ii) Screening of different E. coli strain backgrounds (B, BL21, W, BW25113, MG1655, W3110 and AF1000) for their potential as low acetate-forming, 3HB-producing platforms. Deletion of pta and pta-poxB in the AF1000 strain background was to some extent successful in decreasing acetate formation, but also dramatically increased excretion of pyruvate and did not result in increased 3HB production in high-cell-density fed-batch cultivations. Screening of the different E. coli strains confirmed BL21 as a low acetate forming background. Despite low 3HB titers in low-cell density screening, 3HB-producing BL21 produced 5 times less acetic acid per mol of 3HB, which translated into a 2.3-fold increase in the final 3HB titer and a 3-fold higher volumetric 3HB productivity over 3HB-producing AF1000 strains in nitrogen-limited fed-batch cultivations. Consequently, the BL21 strain achieved the hitherto highest described volumetric productivity of 3HB (1.52 g L-1 h-1) and the highest 3HB concentration (16.3 g L-1) achieved by recombinant E. coli. Screening solely for 3HB titers in low-cell-density batch cultivations would not have identified the potential of this strain, reaffirming the importance of screening with the final production conditions in mind.
  •  
47.
  •  
48.
  • Perez-Zabaleta, Mariel, 1987-, et al. (författare)
  • Increasing the production of (R)-3-hydroxybutyrate in recombinant Escherichia coli by improved cofactor supply
  • 2016
  • Ingår i: Microbial Cell Factories. - : Springer. - 1475-2859. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In a recently discovered microorganism, Halomonas boliviensis, polyhydroxybutyrate production was extensive and in contrast to other PHB producers, contained a set of alleles for the enzymes of this pathway. Also the monomer, (R)-3-hydroxybutyrate (3HB), possesses features that are interesting for commercial production, in particular the synthesis of fine chemicals with chiral specificity. Production with a halophilic organism is however not without serious drawbacks, wherefore it was desirable to introduce the 3HB pathway into Escherichia coli. Results: The production of 3HB is a two-step process where the acetoacetyl-CoA reductase was shown to accept both NADH and NADPH, but where the V-max for the latter was eight times higher. It was hypothesized that NADPH could be limiting production due to less abundance than NADH, and two strategies were employed to increase the availability; (1) glutamate was chosen as nitrogen source to minimize the NADPH consumption associated with ammonium salts and (2) glucose-6-phosphate dehydrogenase was overexpressed to improve NADPH production from the pentose phosphate pathway. Supplementation of glutamate during batch cultivation gave the highest specific productivity (q(3HB) = 0.12 g g(-1) h(-1)), while nitrogen depletion/zwf overexpression gave the highest yield (Y-3HB/CDW = 0.53 g g(-1)) and a 3HB concentration of 1 g L-1, which was 50 % higher than the reference. A nitrogen-limited fedbatch process gave a concentration of 12.7 g L-1 and a productivity of 0.42 g L-1 h(-1), which is comparable to maximum values found in recombinant E. coli. Conclusions: Increased NADPH supply is a valuable tool to increase recombinant 3HB production in E. coli, and the inherent hydrolysis of CoA leads to a natural export of the product to the medium. Acetic acid production is still the dominating by-product and this needs attention in the future to increase the volumetric productivity further.
  •  
49.
  • Perez-Zabaleta, Mariel, 1987- (författare)
  • Metabolic engineering and cultivation strategies for recombinant production of (R)-3-hydroxybutyrate
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Metabolic engineering and process engineering are two powerful disciplines to design and improve microbial processes for sustainable production of an extensive number of compounds ranging from chemicals to pharmaceuticals. The aim of this thesis was to synergistically combine these two disciplines to improve the production of a model chemical called (R)-3-hydroxybutyrate (3HB), which is a medium-value product with a stereocenter and two functional groups. These features make 3HB an interesting building block, especially for the pharmaceutical industry. Recombinant production of 3HB was achieved by expression of two enzymes from Halomonas boliviensis in the model microorganism Escherichia coli, which is a microbial cell factory with proven track record and abundant knowledge on its genome, metabolism and physiology.Investigations on cultivation strategies demonstrated that nitrogen-depleted conditions had the biggest impact on 3HB yields, while nitrogen-limited cultivations predominantly increased 3HB titers and volumetric productivities. To further increase 3HB production, metabolic engineering strategies were investigated to decrease byproduct formation, enhance NADPH availability and improve the overall 3HB-pathway activity. Overexpression of glucose-6-phosphate dehydrogenase (zwf) increased cofactor availability and together with the overexpression of acyl-CoA thioesterase YciA resulted in a 2.7-fold increase of the final 3HB concentration, 52% of the theoretical product yield and a high specific productivity (0.27 g g-1 h-1). In a parallel strategy, metabolic engineering and process design resulted in an E. coli BL21 strain with the hitherto highest reported volumetric 3HB productivity (1.52 g L-1 h-1) and concentration (16.3 g L-1) using recombinant production. The concepts developed in this thesis can be applied to industrial 3HB production processes, but also advance the knowledge base to benefit design and expansion of the product range of biorefineries.
  •  
50.
  • Prytz, Ingela, et al. (författare)
  • Fed-batch production of recombinant beta-galactosidase using the universal stress promoters uspA and uspB in high cell density cultivations.
  • 2003
  • Ingår i: Biotechnology and bioengineering. - : Wiley. - 0006-3592 .- 1097-0290. ; 83:5, s. 595-603
  • Tidskriftsartikel (refereegranskat)abstract
    • A high-level production system using the universal stress promoters uspA and uspB in a fed-batch cultivation based on minimal medium was designed. In development it was shown that a standard industrial fed-batch protocol could not be used for this purpose since it failed to induce the levels of product as compared to the basal level. Instead, a batch protocol followed by a low constant feed of glucose was shown to give full induction. The levels of the product protein, beta-galactosidase, corresponded to approximately 25% of the total protein. Higher levels were found using the uspA than uspB vectors where uspA showed considerably higher basal level. The data indicate that the sigma(70) regulated promoter, uspA, although affected by the alarmone guanosine tetraphosphate, ppGpp, worked partly in a similar manner to constitutive promoters. An industrial high cell density fed-batch cultivation on the basis of the suggested fed-batch protocol and the uspA promoter gave a final beta-galatosidase concentration of 7 g/L and a final cell concentration of 65 g/L. The heterogeneity in production of the individual cell was measured by fluorescence microscopy. The data show that there is a process time independent heterogeneity in production, which is suggested to be caused by heterogeneity in the substrate uptake rate of the individual cell.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 55
Typ av publikation
tidskriftsartikel (38)
doktorsavhandling (8)
licentiatavhandling (5)
annan publikation (1)
forskningsöversikt (1)
bokkapitel (1)
visa fler...
patent (1)
visa färre...
Typ av innehåll
refereegranskat (36)
övrigt vetenskapligt/konstnärligt (18)
populärvet., debatt m.m. (1)
Författare/redaktör
Larsson, Gen (43)
Larsson, Gen, Profes ... (10)
Quillaguamán, Jorge (9)
Gustavsson, Martin (5)
Markland, Katrin (5)
Sandén, Anna Maria (5)
visa fler...
Bäcklund, Emma (5)
Boström, Maria (3)
Belotserkovsky, Jaro ... (3)
Björlenius, Berndt (2)
Shokri, Atefeh (2)
Samuelson, Patrik (2)
Larsson, O (1)
Farewell, Anne, 1961 (1)
Harwood, C (1)
Eriksson Karlström, ... (1)
Hober, Sophia (1)
Nyström, Thomas, 196 ... (1)
Brauner, A (1)
Nystrom, T (1)
Mishra, Deepak (1)
Orrenius, S (1)
Nygren, Per-Åke (1)
Andersson, Christian (1)
Dricu, A (1)
Pedersen, S (1)
Arvestad, Lars (1)
Luthje, P (1)
Carlberg, M (1)
Nyström, T (1)
Hallström, Björn M. (1)
Larsson, Erik G, 197 ... (1)
Backlund, Emma (1)
Ignatushchenko, Mari ... (1)
Nordlund, Pär, Profe ... (1)
Veide, Andres (1)
Ma, Zheng (1)
Tubulekas, I (1)
Björlenius, Berndt, ... (1)
van Maris, Antonius ... (1)
Ødegaard, Hallvard, ... (1)
Blegen, H (1)
Veide, Andres, Unive ... (1)
Neubauer, P (1)
Bostrom, M. (1)
Hedhammar, My (1)
Ward, A. (1)
Schmidt, Stefan, Dok ... (1)
Holst, Olle, Profess ... (1)
Kass, GEN (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (52)
Karolinska Institutet (3)
Luleå tekniska universitet (2)
Göteborgs universitet (1)
Linköpings universitet (1)
Språk
Engelska (55)
Forskningsämne (UKÄ/SCB)
Teknik (26)
Naturvetenskap (21)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy