SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Larsson I. A. Sofia) "

Search: WFRF:(Larsson I. A. Sofia)

  • Result 1-24 of 24
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Campbell, PJ, et al. (author)
  • Pan-cancer analysis of whole genomes
  • 2020
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Journal article (peer-reviewed)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  • Wang, Haidong, et al. (author)
  • Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015
  • 2016
  • In: The Lancet. - 0140-6736 .- 1474-547X. ; 388:10053, s. 1459-1544
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures.METHODS: We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).FINDINGS: Globally, life expectancy from birth increased from 61·7 years (95% uncertainty interval 61·4-61·9) in 1980 to 71·8 years (71·5-72·2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11·3 years (3·7-17·4), to 62·6 years (56·5-70·2). Total deaths increased by 4·1% (2·6-5·6) from 2005 to 2015, rising to 55·8 million (54·9 million to 56·6 million) in 2015, but age-standardised death rates fell by 17·0% (15·8-18·1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14·1% (12·6-16·0) to 39·8 million (39·2 million to 40·5 million) in 2015, whereas age-standardised rates decreased by 13·1% (11·9-14·3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42·1%, 39·1-44·6), malaria (43·1%, 34·7-51·8), neonatal preterm birth complications (29·8%, 24·8-34·9), and maternal disorders (29·1%, 19·3-37·1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death.INTERPRETATION: At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems.
  •  
3.
  • Lozano, Rafael, et al. (author)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • In: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Journal article (peer-reviewed)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
4.
  •  
5.
  • Kassebaum, Nicholas J., et al. (author)
  • Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015 : a systematic analysis for the Global Burden of Disease Study 2015
  • 2016
  • In: The Lancet. - 0140-6736 .- 1474-547X. ; 388:10053, s. 1603-1658
  • Journal article (peer-reviewed)abstract
    • Background Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development. Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate. Findings Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs off set by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2.9 years (95% uncertainty interval 2.9-3.0) for men and 3.5 years (3.4-3.7) for women, while HALE at age 65 years improved by 0.85 years (0.78-0.92) and 1.2 years (1.1-1.3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs. Interpretation Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum.
  •  
6.
  • Weinstein, John N., et al. (author)
  • The cancer genome atlas pan-cancer analysis project
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:10, s. 1113-1120
  • Research review (peer-reviewed)abstract
    • The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile. © 2013 Nature America, Inc. All rights reserved.
  •  
7.
  • Wang, Haidong, et al. (author)
  • Estimates of global, regional, and national incidence, prevalence, and mortality of HIV, 1980-2015 : the Global Burden of Disease Study 2015.
  • 2016
  • In: The lancet. HIV. - : Elsevier. - 2352-3018. ; 3:8, s. e361-e387
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Timely assessment of the burden of HIV/AIDS is essential for policy setting and programme evaluation. In this report from the Global Burden of Disease Study 2015 (GBD 2015), we provide national estimates of levels and trends of HIV/AIDS incidence, prevalence, coverage of antiretroviral therapy (ART), and mortality for 195 countries and territories from 1980 to 2015.METHODS: For countries without high-quality vital registration data, we estimated prevalence and incidence with data from antenatal care clinics and population-based seroprevalence surveys, and with assumptions by age and sex on initial CD4 distribution at infection, CD4 progression rates (probability of progression from higher to lower CD4 cell-count category), on and off antiretroviral therapy (ART) mortality, and mortality from all other causes. Our estimation strategy links the GBD 2015 assessment of all-cause mortality and estimation of incidence and prevalence so that for each draw from the uncertainty distribution all assumptions used in each step are internally consistent. We estimated incidence, prevalence, and death with GBD versions of the Estimation and Projection Package (EPP) and Spectrum software originally developed by the Joint United Nations Programme on HIV/AIDS (UNAIDS). We used an open-source version of EPP and recoded Spectrum for speed, and used updated assumptions from systematic reviews of the literature and GBD demographic data. For countries with high-quality vital registration data, we developed the cohort incidence bias adjustment model to estimate HIV incidence and prevalence largely from the number of deaths caused by HIV recorded in cause-of-death statistics. We corrected these statistics for garbage coding and HIV misclassification.FINDINGS: Global HIV incidence reached its peak in 1997, at 3·3 million new infections (95% uncertainty interval [UI] 3·1-3·4 million). Annual incidence has stayed relatively constant at about 2·6 million per year (range 2·5-2·8 million) since 2005, after a period of fast decline between 1997 and 2005. The number of people living with HIV/AIDS has been steadily increasing and reached 38·8 million (95% UI 37·6-40·4 million) in 2015. At the same time, HIV/AIDS mortality has been declining at a steady pace, from a peak of 1·8 million deaths (95% UI 1·7-1·9 million) in 2005, to 1·2 million deaths (1·1-1·3 million) in 2015. We recorded substantial heterogeneity in the levels and trends of HIV/AIDS across countries. Although many countries have experienced decreases in HIV/AIDS mortality and in annual new infections, other countries have had slowdowns or increases in rates of change in annual new infections.INTERPRETATION: Scale-up of ART and prevention of mother-to-child transmission has been one of the great successes of global health in the past two decades. However, in the past decade, progress in reducing new infections has been slow, development assistance for health devoted to HIV has stagnated, and resources for health in low-income countries have grown slowly. Achievement of the new ambitious goals for HIV enshrined in Sustainable Development Goal 3 and the 90-90-90 UNAIDS targets will be challenging, and will need continued efforts from governments and international agencies in the next 15 years to end AIDS by 2030.
  •  
8.
  • Andersson, L. Robin, et al. (author)
  • Localized roughness effects in non-uniform hydraulic waterways
  • 2021
  • In: Journal of Hydraulic Research. - : Taylor & Francis. - 0022-1686 .- 1814-2079. ; 59:1, s. 100-108
  • Journal article (peer-reviewed)abstract
    • Hydropower tunnels are generally subject to a degree of rock falls. Studies explaining this are scarce and the current industrial standards offer little insight. To simulate tunnel conditions, high Reynolds number flow inside a channel with a rectangular cross-section is investigated using Particle Image Velocimetry and pressure measurements. For validation, the flow is modelled using LES and a RANS approach with k - ε turbulence model. One wall of the channel has been replaced with a rough surface captured using laser scanning. The results indicate flow-roughness effects deviating from the standard non-asymmetric channel flow and hence, can not be properly predicted using spatially averaged relations. These effects manifest as localized bursts of velocity connected to individual roughness elements. The bursts are large enough to affect both temporally and spatially averaged quantities. Both turbulence models show satisfactory agreement for the overall flow behaviour, where LES also provided information for in-depth analysis.
  •  
9.
  • Forslund, Tobias O. M., 1992-, et al. (author)
  • A dual-lattice hydrodynamic-thermal MRT-LBM model implemented on GPU for DNS calculations of turbulent thermal flows
  • 2022
  • In: International journal of numerical methods for heat & fluid flow. - : Emerald Group Publishing Limited. - 0961-5539 .- 1758-6585. ; 35:5, s. 1703-1725
  • Journal article (peer-reviewed)abstract
    • PurposeThe purpose of this paper is to present a fast and bare bones implementation of a numerical method for quickly simulating turbulent thermal flows on GPUs. The work also validates earlier research showing that the lattice Boltzmann method (LBM) method is suitable for complex thermal flows.Design/methodology/approachA dual lattice hydrodynamic (D3Q27) thermal (D3Q7) multiple-relaxation time LBM model capable of thermal DNS calculations is implemented in CUDA.FindingsThe model has the same computational performance compared to earlier publications of similar LBM solvers. The solver is validated against three benchmark cases for turbulent thermal flow with available data and is shown to be in excellent agreement.Originality/valueThe combination of a D3Q27 and D3Q7 stencil for a multiple relaxation time -LBM has, to the authors’ knowledge, not been used for simulations of thermal flows. The code is made available in a public repository under a free license.
  •  
10.
  • Forslund, Tobias O. M., 1992-, et al. (author)
  • Non-Stokesian flow through ordered thin porous media imaged by tomographic-PIV
  • 2021
  • In: Experiments in Fluids. - : Springer. - 0723-4864 .- 1432-1114. ; 62:3
  • Journal article (peer-reviewed)abstract
    • The 3D flow-fields in a staggered and cubic arrangement of mono-radii cylinders are investigated using tomographic-PIV. The cylinder Reynolds-number is in the range of ≈10 to ≈800 giving an almost complete overview of the transition region. Two pore-scale effects are discovered. The first, visible in the cubic packing, is a spatially alternating lateral velocity field, which has a significant impact on the pressure drop and transversal dispersion. The second effect, present in the staggered array, is an example of a disturbance propagation effect that takes place in the laminar steady region; this manifests as a peculiar and complex flow-pattern. In accordance with other studies, it is shown that Darcy’s law can, from an engineering point of view be valid far beyond the limit for Stokesian flow.
  •  
11.
  • Forslund, Tobias O.M. 1992-, et al. (author)
  • Steady-State Transitions in Ordered Porous Media
  • 2023
  • In: Transport in Porous Media. - : Springer Nature. - 0169-3913 .- 1573-1634. ; 149:2, s. 551-577
  • Journal article (peer-reviewed)abstract
    • Previously performed experiments on flow through an ordered porous media cell with tomographic particle image velocimetry reveal a complex three-dimensional steady-state flow pattern. This flow pattern emerge in the region where inertial structures have been previously reported for a wide range of packings. The onset of these steady-state inertial flow structures is here scrutinized for three different types of packing using a finite difference method. It is concluded that the onset of the flow structure coincides with a symmetry break in the flow field and discontinuities in the pressure drop, volume averaged body forces and heat transfer. A quantity for identifying the transition is proposed, namely the pressure integral across the solid surfaces. It is also shown that the transition can both increase and decrease the heat transfer dependent on the actual geometry of the porous medium.
  •  
12.
  • Forslund, Tobias O. M., 1992-, et al. (author)
  • The Effects of Periodicity Assumptions in Porous Media Modelling
  • 2021
  • In: Transport in Porous Media. - : Springer. - 0169-3913 .- 1573-1634. ; 137:3, s. 769-797
  • Journal article (peer-reviewed)abstract
    • The effects of periodicity assumptions on the macroscopic properties of packed porous beds are evaluated using a cascaded Lattice-Boltzmann method model. The porous bed is modelled as cubic and staggered packings of mono-radii circular obstructions where the bed porosity is varied by altering the circle radii. The results for the macroscopic properties are validated using previously published results. For unsteady flows, it is found that one unit cell is not enough to represent all structures of the fluid flow which substantially impacts the permeability and dispersive properties of the porous bed. In the steady region, a single unit cell is shown to accurately represent the fluid flow across all cases studied
  •  
13.
  • Barcot, Ana, et al. (author)
  • Stormwater Uptake in Sponge-Like Porous Bodies Surrounded by a Pond: A Fluid Mechanics Analysis
  • 2023
  • In: Water. - : MDPI. - 2073-4441. ; 15:18
  • Journal article (peer-reviewed)abstract
    • In this work, a previously published model for the water up take of stormwater in sponge-like porous bodies by the group is further developed. This is done by investigating the highest-performing model and considering the water uptake from the surroundings of a pond and rain-infiltrated soil. This implies that water uptake from impermeable to partially permeable surfaces is examined. Hence, the following cases are considered: (1) impervious bottom surface and no precipitation, (2) impervious bottom surface with precipitation, (3) permeable soil with no precipitation, and (4) permeable soil with precipitation. A mathematical model covering all these cases is presented, where the governing equations are the mass conservation and Darcy’s law together with an assumption of a sharp wetting front being a first-order approximation of the complete Richard’s equation. Results for the water uptake height, pond depth, and wetting front are computed numerically and plotted against time. Analytical solutions are also presented in certain cases, and critical values are obtained. The parametric study includes variations in the ratio of the model- to the surrounding ground surface area, initial pond depth, precipitation, and soil characteristics. To exemplify, the time it takes to absorb the water from the pond after a precipitation period is presented. The results are related to the Swedish rainfall data of 1 h duration with a return period of 10 years. When evaluating efficiency, the focus is on the absorption time. Results vary considerably, demonstrating a general trend that with soil infiltration, the water absorption rate is higher. For most cases, the considered water amount is absorbed completely, although depending on the parameters and conditions. These results serve to optimize the model for each of the cases. The main focus of the research lies in the theoretical aspect.
  •  
14.
  • Kadia, Subhojit, et al. (author)
  • Experimental and numerical investigations of the water surface profile and wave extrema of supercritical flows in a narrow channel bend
  • 2024
  • In: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Supercritical flows in channel bends, e.g., in steep streams, chute spillways, and flood and sediment bypass tunnels (SBTs), experience cross-waves, which undulate the free surface. The designs of these hydraulic structures and flood protection retaining structures in streams necessitate computing the locations and water depths of the wave extrema. This study numerically and experimentally investigates the water surface profiles along the sidewalls, the wave extrema flow depths, and their angular locations in a narrow channel bend model of the Solis SBT in Switzerland. The 0.2 m wide and 16.75 m long channel has a bend of 6.59 m radius and 46.5° angle of deviation. The tested flow conditions produced Froude numbers ≈ 2 and aspect ratios ranging from 1.14 to 1.83. Two-phase flow simulations were performed in OpenFOAM using the RNG k–ε turbulence closure model and the volume-of-fluid method. The simulated angular locations of the first wave extrema and the corresponding flow depths deviate marginally, within ± 6.3% and ± 2.1%, respectively, from the experimental observations, which signifies good predictions using the numerical model. Larger deviations, especially for the angular locations of the wave extrema, are observed for the existing analytical and empirical approaches. Therefore, the presented numerical approach is a suitable tool in designing the height of the hydraulic structures with bends and conveying supercritical flows. In the future, the model’s application shall be extended to the design of the height and location of retaining walls, embankments, and levees in steep natural streams with bends.
  •  
15.
  • Kadia, Subhojit, et al. (author)
  • Supercritical Flow Characteristics in a Narrow Channel Bend
  • 2023
  • In: Proceedings of the 40th IAHR World Congress - 2023: Rivers - Connecting Mountains and Coasts. - : International Association for Hydro-Environment Engineering and Research. ; , s. 87-93
  • Conference paper (peer-reviewed)
  •  
16.
  • Larsson, I. A. Sofia, et al. (author)
  • Experimental study of confined coaxial jets in a non‑axisymmetric co‑flow
  • 2020
  • In: Experiments in Fluids. - : Springer Nature. - 0723-4864 .- 1432-1114. ; 61:12
  • Journal article (peer-reviewed)abstract
    • Confined, turbulent, coaxial jets in a non-axisymmetric co-flow are studied using particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) simultaneously. Eight different cases are measured. Two momentum flow ratios ofthe co-flow are used in the experiment to investigate the effect on the coaxial burner jet behavior and mixing characteristics of the coaxial jet flow and the co-flowing, secondary fluid. In addition, four different momentum flow ratios of the coaxial outer to inner jet are investigated. The objective of the study is to get a deeper understanding of how the flow dynamics affects the entrainment and mixing process in a coaxial jet with a non-axisymmetric, surrounding co-flow. The results show that the introduction of a coaxial stream affects the inner jet and decreases the mixing with the surrounding co-flow; the effect is enhanced as the momentum flow ratio of the coaxial jet increases. The distribution of the secondary, co-flowing fluid controls the shape and direction of the coaxial jet, but does not have a significant impact on the mixing process near the centerline. Practical implications of this investigation are related to the possibility to better control a diffusion flame by introducing acoaxial stream. In this context it is concluded that it is possible to affect the jet development and hence the flame length. The conclusion is based on the assumption that the outer, coaxial stream has a low mass flow, not enough to provide complete combustion, and hence the co-flowing, secondary fluid provides the air needed for the combustion process.
  •  
17.
  • Larsson, I. A. Sofia, et al. (author)
  • PIV analysis of merging flow in a simplified model of a rotary kiln
  • 2012
  • In: Experiments in Fluids. - : Springer Science and Business Media LLC. - 0723-4864 .- 1432-1114. ; 53:2, s. 545-560
  • Journal article (peer-reviewed)abstract
    • Rotary kilns are used in a variety of industrial applications. The focus in this work is on characterizing the non-reacting, isothermal flow field in a rotary kiln used for iron ore pelletization. A downscaled, simplified model of the kiln is experimentally investigated using particle image velocimetry. Five different momentum flux ratios of the two inlet ducts to the kiln are investigated in order to evaluate its effect on the flow field in general and the recirculation zone in particular. Time-averaged and phase-averaged analyses are reported, and it is found that the flow field resembles that of two parallel merging jets, with the same characteristic flow zones. The back plate separating the inlet ducts acts as a bluff body to the flow and creates a region of reversed flow behind it. Due to the semicircular cross-section of the jets, the wake is elongated along the walls. Conclusions are that the flow field shows a dependence on momentum flux ratio of the jets; as the momentum flux ratio approaches unity, there is an increasing presence of von Kármán-type coherent structures with a Strouhal number of between 0.16 and 0.18. These large-scale structures enhance the mixing of the jets and also affect the size of the recirculation zone. It is also shown that the inclination of the upper inlet duct leads to a decrease in length of the recirculation zone in certain cases.
  •  
18.
  • Larsson, I. A. Sofia, et al. (author)
  • Simulation of Thermal Effects on the Flow Field in a Pilot-Scale Kiln
  • 2021
  • In: Mining, Metallurgy & Exploration. - : Springer. - 2524-3462 .- 2524-3470. ; 38:3, s. 1487-1495
  • Journal article (peer-reviewed)abstract
    • The flow field and coal combustion process in a pilot-scale iron ore pelletizing kiln is simulated using a computational fluid dynamics (CFD) model. The objective of the work is to investigate how the thermal effects from the flame affect the flow field. As expected, the combustion process with the resulting temperature rise and volume expansion leads to an increase of the velocity in the kiln. Apart from that, the overall flow field looks similar regardless of whether combustion is present or not. The flow field though affects the combustion process by controlling the mixing rates of fuel and air, governing the flame propagation. This shows the importance of correctly predicting the flow field in this type of kiln, with a large amount of process gas circulating, in order to optimize the combustion process. The results also justify the use of down-scaled, geometrically similar, water models to investigate kiln aerodynamics in general and mixing properties in particular. Even if the heat release from the flame is neglected, valuable conclusions regarding the flow field can still be drawn.
  •  
19.
  • Larsson, I.A Sofia (author)
  • The Aerodynamics of an Iron Ore Pelletizing Rotary Kiln
  • 2022
  • In: Fluids. - : MDPI. - 2311-5521. ; 7:5
  • Journal article (peer-reviewed)abstract
    • This paper summarizes more than a decade of systematic studies of the flow field in an iron ore pelletizing rotary kiln using computational fluid dynamics (CFD) on simplified models of a real kiln. Physical, laser-based experiments have been performed to validate part of the numerical results. The objective is a better understanding of the kiln aerodynamics and, by extension, its effect on the combustion process. Despite all of the simplifications regarding the models studied in this project, the results show the importance of correctly predicting the flow field in order to optimize the combustion process. Combustion simulations revealed that the heat release from the flame does not affect or change the flow field in any significant way; the flow field, however, governs the flame propagation and affects the combustion process by controlling the mixing rates of fuel and air. Using down-scaled isothermal water models for investigating kiln aerodynamics in general and mixing properties in particular is therefore justified. Although the heat release from the flame cannot be accounted for in isothermal models, valuable implications regarding the real process can still be gained. To better model the actual process numerically, more advanced submodels for both the combustion and especially the flow field are needed. The complex flow field in this type of rotary kiln requires a careful choice of turbulence model to obtain accurate simulation results.
  •  
20.
  • Larsson, I. A. Sofia, et al. (author)
  • Visualization of merging flow by usage of PIV and CFD with application to grate-kiln induration machines
  • 2012
  • In: Journal of Applied Fluid Mechanics. - 1735-3572 .- 1735-3645. ; 5:4, s. 81-89
  • Journal article (peer-reviewed)abstract
    • One way to upgrade iron ore is to process it into pellets. Such a process includes several stages involving complex fluid dynamics. In this work, focus is on the grate-kiln pelletizing process and especially on the rotary kiln, with the objective to get a deeper understanding of the aerodynamics in order to improve the combustion. A down-scaled, simplified model of the real kiln is created and both numerical and experimental analyses of the flow field are performed. Conclusions are that steady state simulations can be used to get an overview over the main features of the flow field. Precautions should though be taken when analyzing the recirculation zone since steady state simulations do not capture the transient, oscillating behavior of the flow seen in the physical experiment. These oscillations will under certain conditions considerably affect the size of the recirculation zone.
  •  
21.
  • Larsson, Sofia I.A., et al. (author)
  • Towards flow field measurements around dynamic cross-country skiers
  • 2024
  • In: Current Issues in Sport Science (CISS). - : Bern Open Publishing. - 2414-6641. ; 9:3
  • Journal article (peer-reviewed)abstract
    • Flow field measurements around cross-country skiers (xc skiers) are lacking in the literature to date. The aim was therefore to investigate the possibility of using particle tracking velocimetry for visualization and measurement of the flow field around xc skiers roller skiing on a treadmill in a wind tunnel. The airflow was seeded with neutrally buoyant helium-filled soap bubbles as tracer particles, following the flow without affecting it. As illumination, two different approaches were tested: first, a laser in the cameras’ line of sight (sagittal plane), then an LED unit directed vertically in a narrow slice, clearly limiting the depth of the measurement volume in the cameras’ line of sight. The flow field was studied at various speeds (3-7 m/s) around a single skier as well as around two skiers in line with the streaming airflow. It was found that the experimental approach has the potential to provide detailed insights, both qualitatively and quantitatively, into the flow field dynamics. The main challenges regarding setup, illumination, seeding, and cameras were identified, and possible improvements to streamline the experimental methodology were discussed. 
  •  
22.
  • Pavasson, Jonas, et al. (author)
  • Challenges and opportunities within simulation-driven functional product development and operation : Special Session: Product Development for Through-Life Engineering Services
  • 2014
  • In: Procedia CIRP. - : Elsevier BV. - 2212-8271 .- 2212-8271. ; 22, s. 169-174
  • Journal article (peer-reviewed)abstract
    • The product development process at industrial companies has traditionally focused on hardware-oriented solutions. Business strategies strive towards more service-oriented solutions e.g., functional product business models. In this paper two case studies are developed and the objective is to highlight important challenges and opportunities by implementing a simulation-driven strategy in functional product development and operation. It can be concluded that challenges and opportunities within simulation-driven functional product development and operation are related to both quality and management of the simulations. With the proposed strategies for validation and coupling of the simulations, some of the challenges within functional product development can be overcome.
  •  
23.
  • Raj, Aashna, et al. (author)
  • Evaluating hydrogen gas transport in pipelines: Current state of numerical and experimental methodologies
  • 2024
  • In: International journal of hydrogen energy. - : Elsevier. - 0360-3199 .- 1879-3487. ; 67, s. 136-149
  • Research review (peer-reviewed)abstract
    • This review article provides a comprehensive overview of the fundamentals, modelling approaches, experimental studies, and challenges associated with hydrogen gas flow in pipelines. It elucidates key aspects of hydrogen gas flow, including density, compressibility factor, and other relevant properties crucial for understanding its behavior in pipelines. Equations of state are discussed in detail, highlighting their importance in accurately modeling hydrogen gas flow. In the subsequent sections, one-dimensional and three-dimensional modelling techniques for gas distribution networks and localized flow involving critical components are explored. Emphasis is placed on transient flow, friction losses, and leakage characteristics, shedding light on the complexities of hydrogen pipeline transportation. Experimental studies investigating hydrogen pipeline transportation dynamics are outlined, focusing on the impact of leakage on surrounding environments and safety parameters. The challenges and solutions associated with repurposing natural gas pipelines for hydrogen transport are discussed, along with the influence of pipeline material on hydrogen transportation. Identified research gaps underscore the need for further investigation into areas such as transient flow behavior, leakage mitigation strategies, and the development of advanced modelling techniques. Future perspectives address the growing demand for hydrogen as a clean energy carrier and the evolving landscape of hydrogen-based energy systems.
  •  
24.
  • Åkerstedt, Hans O., et al. (author)
  • Modeling the Swelling of Hydrogels with Application to Storage of Stormwater
  • 2021
  • In: Water. - : MDPI. - 2073-4441. ; 13:1
  • Journal article (peer-reviewed)abstract
    • The swelling effect in hydrogel bodies or sponge-like porous bodies (SPB) used in a specific stormwater storage concept of the down-flow type is considered. A macroscopic swelling model is proposed, in which water is assumed to penetrate into the hydrogel by diffusion described by diffusion equations together with a free-moving boundary separating the interface between the water and hydrogel. Such a type of problem belongs to the certain class of problems called Stefan-problems. The main objective of this contribution is to compare how the theoretical total amount of absorbed water is modified by the inclusion of swelling, when compared to the previously studied SPB devices analyzed only for the effect of diffusion. The results can be summarized in terms of the geometrical dimensions of the storage device and the magnitude of the diffusion coefficient D. The geometrical variables influence both the maximum possible absorbed volume and the time to reach that volume. The diffusion coefficient D only influences the rate of volume growth and the time to reach the maximum volume of stored water. The initial swelling of the hydrogel SPB grows with time (√Dt) until the steady state is reached and the swelling rate approaches zero. In all the cases considered, the swelling in general increases the maximum possible absorbed water volume by an amount of 14%.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-24 of 24
Type of publication
journal article (21)
research review (2)
conference paper (1)
Type of content
peer-reviewed (24)
Author/Editor
Larsson, Anders (5)
McKee, Martin (5)
Koyanagi, Ai (5)
Koul, Parvaiz A. (5)
Gething, Peter W. (5)
Schutte, Aletta E. (5)
show more...
Badawi, Alaa (5)
Bensenor, Isabela M. (5)
Dandona, Lalit (5)
Dandona, Rakhi (5)
Esteghamati, Alireza (5)
Farzadfar, Farshad (5)
Fernandes, Joao C. (5)
Geleijnse, Johanna M ... (5)
Hamidi, Samer (5)
Harikrishnan, Sivada ... (5)
Jonas, Jost B. (5)
Kasaeian, Amir (5)
Khader, Yousef Saleh (5)
Khang, Young-Ho (5)
Kokubo, Yoshihiro (5)
Kumar, G. Anil (5)
Lopez, Alan D. (5)
Lotufo, Paulo A. (5)
Malekzadeh, Reza (5)
Mendoza, Walter (5)
Miller, Ted R. (5)
Mokdad, Ali H. (5)
Qorbani, Mostafa (5)
Rai, Rajesh Kumar (5)
Roshandel, Gholamrez ... (5)
Sartorius, Benn (5)
Sepanlou, Sadaf G. (5)
Sorensen, Reed J. D. (5)
Tran, Bach Xuan (5)
Uthman, Olalekan A. (5)
Vollset, Stein Emil (5)
Werdecker, Andrea (5)
Xu, Gelin (5)
Yonemoto, Naohiro (5)
Murray, Christopher ... (5)
Al-Aly, Ziyad (5)
Alkerwi, Ala'a (5)
Asayesh, Hamid (5)
Bennett, Derrick A. (5)
Ciobanu, Liliana G. (5)
Eshrati, Babak (5)
Hafezi-Nejad, Nima (5)
Kinfu, Yohannes (5)
Lim, Stephen S. (5)
show less...
University
Luleå University of Technology (17)
Uppsala University (6)
Karolinska Institutet (6)
Lund University (5)
Högskolan Dalarna (5)
University of Gothenburg (4)
show more...
Chalmers University of Technology (3)
Umeå University (2)
Södertörn University (1)
show less...
Language
English (24)
Research subject (UKÄ/SCB)
Engineering and Technology (17)
Medical and Health Sciences (7)
Natural sciences (2)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view