SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lascoux Martin) "

Sökning: WFRF:(Lascoux Martin)

  • Resultat 1-50 av 163
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Plomion, Christophe, et al. (författare)
  • Oak genome reveals facets of long lifespan
  • 2018
  • Ingår i: NATURE PLANTS. - : Springer Science and Business Media LLC. - 2055-026X .- 2055-0278. ; 4:7, s. 440-452
  • Tidskriftsartikel (refereegranskat)abstract
    • Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes' but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times(2). With 450 species spread throughout Asia, Europe and America(3), oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical(4) and modelling(5) approaches have shown that intra-organismal genetic heterogeneity can be selected for(6) and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes(7). However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.
  •  
2.
  •  
3.
  • Ament-Velásquez, S. Lorena, Ph.D. 1988-, et al. (författare)
  • Allorecognition genes drive reproductive isolation in Podospora anserina
  • 2022
  • Ingår i: Nature Ecology & Evolution. - : Springer Nature. - 2397-334X. ; 6:7, s. 910-923
  • Tidskriftsartikel (refereegranskat)abstract
    • Allorecognition, the capacity to discriminate self from conspecific non-self, is a ubiquitous organismal feature typically governed by genes evolving under balancing selection. Here, we show that in the fungus Podospora anserina, allorecognition loci controlling vegetative incompatibility (het genes), define two reproductively isolated groups through pleiotropic effects on sexual compatibility. These two groups emerge from the antagonistic interactions of the unlinked loci het-r (encoding a NOD-like receptor) and het-v (encoding a methyltransferase and an MLKL/HeLo domain protein). Using a combination of genetic and ecological data, supported by simulations, we provide a concrete and molecularly defined example whereby the origin and coexistence of reproductively isolated groups in sympatry is driven by pleiotropic genes under balancing selection.
  •  
4.
  • An, Junghwa, et al. (författare)
  • Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2009-30 November 2009
  • 2010
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 10:2, s. 404-408
  • Tidskriftsartikel (refereegranskat)abstract
    • This article documents the addition of 411 microsatellite marker loci and 15 pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Acanthopagrus schlegeli, Anopheles lesteri, Aspergillus clavatus, Aspergillus flavus, Aspergillus fumigatus, Aspergillus oryzae, Aspergillus terreus, Branchiostoma japonicum, Branchiostoma belcheri, Colias behrii, Coryphopterus personatus, Cynogolssus semilaevis, Cynoglossus semilaevis, Dendrobium officinale, Dendrobium officinale, Dysoxylum malabaricum, Metrioptera roeselii, Myrmeciza exsul, Ochotona thibetana, Neosartorya fischeri, Nothofagus pumilio, Onychodactylus fischeri, Phoenicopterus roseus, Salvia officinalis L., Scylla paramamosain, Silene latifo, Sula sula, and Vulpes vulpes. These loci were cross-tested on the following species: Aspergillus giganteus, Colias pelidne, Colias interior, Colias meadii, Colias eurytheme, Coryphopterus lipernes, Coryphopterus glaucofrenum, Coryphopterus eidolon, Gnatholepis thompsoni, Elacatinus evelynae, Dendrobium loddigesii Dendrobium devonianum, Dysoxylum binectariferum, Nothofagus antarctica, Nothofagus dombeyii, Nothofagus nervosa, Nothofagus obliqua, Sula nebouxii, and Sula variegata. This article also documents the addition of 39 sequencing primer pairs and 15 allele specific primers or probes for Paralithodes camtschaticus.
  •  
5.
  • Bartoszek, Krzysztof, 1984-, et al. (författare)
  • Using the Ornstein-Uhlenbeck process to model the evolution of interacting populations
  • 2017
  • Ingår i: Journal of Theoretical Biology. - : Elsevier BV. - 0022-5193 .- 1095-8541. ; 429, s. 35-45
  • Tidskriftsartikel (refereegranskat)abstract
    • The Ornstein-Uhlenbeck (OU) process plays a major role in the analysis of the evolution of phenotypic traits along phylogenies. The standard OU process includes random perturbations and stabilizing selection and assumes that species evolve independently. However, evolving species may interact through various ecological process and also exchange genes especially in plants. This is particularly true if we want to study phenotypic evolution among diverging populations within species. In this work we present a straightforward statistical approach with analytical solutions that allows for the inclusion of adaptation and migration in a common phylogenetic framework, which can also be useful for studying local adaptation among populations within the same species. We furthermore present a detailed simulation study that clearly indicates the adverse effects of ignoring migration. Similarity between species due to migration could be misinterpreted as very strong convergent evolution without proper correction for these additional dependencies. Finally, we show that our model can be interpreted in terms of ecological interactions between species, providing a general framework for the evolution of traits between "interacting" species or populations.
  •  
6.
  • Benavides, Raquel, et al. (författare)
  • The GenTree Leaf Collection : Inter- and intraspecific leaf variation in seven forest tree species in Europe
  • 2021
  • Ingår i: Global Ecology and Biogeography. - : John Wiley & Sons. - 1466-822X .- 1466-8238. ; 30:3, s. 590-597
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation Trait variation within species can reveal plastic and/or genetic responses to environmental gradients, and may indicate where local adaptation has occurred. Here, we present a dataset of rangewide variation in leaf traits from seven of the most ecologically and economically important tree species in Europe. Sample collection and trait assessment are embedded in the GenTree project (EU-Horizon 2020), which aims at characterizing the genetic and phenotypic variability of forest tree species to optimize the management and sustainable use of forest genetic resources. Our dataset captures substantial intra- and interspecific leaf phenotypic variability, and provides valuable information for studying the relationship between ecosystem functioning and trait variability of individuals, and the response and resilience of species to environmental changes. Main types of variable contained We chose morphological and chemical characters linked to trade-offs between acquisition and conservation of resources and water use, namely specific leaf area, leaf size, carbon and nitrogen content and their ratio, and the isotopic signature of stable isotope C-13 and N-15 in leaves. Spatial location and grain We surveyed between 18 and 22 populations per species, 141 in total, across Europe. Time period Leaf sampling took place between 2016 and 2017. Major taxa and level of measurement We sampled at least 25 individuals in each population, 3,569 trees in total, and measured traits in 35,755 leaves from seven European tree species, i.e. the conifers Picea abies, Pinus pinaster and Pinus sylvestris, and the broadleaves Betula pendula, Fagus sylvatica, Populus nigra and Quercus petraea. Software format The data files are in ASCII text, tab delimited, not compressed.
  •  
7.
  • Berlin Kolm, Sofia, et al. (författare)
  • Polymorphism and divergence of two willow species, Salix viminalis L. and Salix schwerinii E. Wolf
  • 2011
  • Ingår i: G3. - : Oxford University Press (OUP). - 2160-1836. ; 1:5, s. 387-400
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated species divergence, present and past gene flow, levels of nucleotide polymorphism, and linkage disequilibrium in two willows from the plant genus Salix. Salix belongs together with Populus to the Salicaceae family; however, most population genetic studies of Salicaceae have been performed in Populus, the model genus in forest biology. Here we present a study on two closely related willow species Salix viminalis and S. schwerinii, in which we have resequenced 33 and 32 nuclear gene segments representing parts of 18 nuclear loci in 24 individuals for each species. We used coalescent simulations and estimated the split time to around 600,000 years ago and found that there is currently limited gene flow between the species. Mean intronic nucleotide diversity across gene segments was slightly higher in S. schwerinii (πi = 0.00849) than in S. viminalis (πi = 0.00655). Compared with other angiosperm trees, the two willows harbor intermediate levels of silent polymorphisms. The decay of linkage disequilibrium was slower in S. viminalis compared with S. schwerinii, and we speculate that this is due to different demographic histories as S. viminalis has been partly domesticated in Europe.
  •  
8.
  • Bodare, Sofia, 1984- (författare)
  • Conservation Genetics and Speciation in Asian Forest Trees
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Tropical forests are important because they are the home of millions of species at the same time as they perform ecosystem services and provide food, cash income and raw materials for the people living there. The present thesis elucidates questions relevant to the conservation of selected forest trees as it adds to the knowledge in the phylogeny, population structure, genetic diversity and adaptation in these species.We investigated the genetic diversity and speciation of four spruce species around the Qinghai-Tibetan Plateau (QTP), Western China, and one from Taiwan. Nucleotide diversity was low in P. schrenkiana and the Taiwanese P. morrisonicola but higher in P. likiangensis, P. purpurea and P. wilsonii. This can be explained by the population bottlenecks that were detected in the two former species by coalescent-based analysis. The phylogenetic relationships between the five species were difficult to interpret, possibly because other Asian spruce species might have been involved. However, all species are distinct except P. purpurea, which likely has a hybrid origin. The rate of bud set and expression of the FTL2 gene in response to photoperiod in the southernmost growing spruce species, P. morrisonicola, was studied. We found that in this species, although growing near the equator, bud set appears to be induced mainly by a shortening of photoperiod, similarly to its more northerly growing spruce relatives. In addition, seedlings originating from mother trees growing at higher elevations showed a trend towards earlier bud set than seedlings originating from mother trees at lower altitudes.We also studied the population structure and genetic diversity in the endemic white cedar (Dysoxylum malabaricum) in the Western Ghats, India. Overall, no increase in inbreeding that could be related to human activities could be detected. Populations appear to have maintained genetic diversity and gene flow in spite of forest fragmentation over the distribution range. However, there is a severe lack of juveniles and young adults in several populations that needs to be further addressed. Finally, we recommend conservation units based on population structure.
  •  
9.
  • Bodare, Sofia, et al. (författare)
  • Fine- and local- scale genetic structure of Dysoxylum malabaricum, a late-successional canopy tree species in disturbed forest patches in the Western Ghats, India
  • 2017
  • Ingår i: Conservation Genetics. - : SPRINGER. - 1566-0621 .- 1572-9737. ; 18:1, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, which is the world's most densely populated biodiversity hotspot. In this study, we used variation at ten nuclear simple sequence repeat loci to investigate genetic diversity and fine scale spatial genetic structure (FSGS) in seedlings and adults of D. malabaricum from four forest patches in the northern part of the Western Ghats. When genetic variation was compared between seedlings and adults across locations, significant differences were detected in allelic richness, observed heterozygosity, fixation index (F (IS)), and relatedness (P < 0.05). Reduced genetic diversity and increased relatedness at the seedling stage might be due to fragmentation and disturbance. There was no FSGS at the adult stage and FSGS was limited to shorter distance classes at the seedling stage. However, there was clear spatial genetic structure at the landscape level (< 50 km), regardless of age class, due to limited gene flow between forest patches. A comparison of the distributions of size classes in the four locations with published data from a more southern area, showed that large trees (diameter at breast height, DBH, > 130 cm) are present in the southern sacred forests but not in the northern forest reserves. This pattern is likely due to stronger harvesting pressure in the north compared to the south, because in the north there are no cultural taboos regulating the extraction of natural resources. The implications for forest conservation in this biodiversity hotspot are discussed.
  •  
10.
  • Bodare, Sofia, 1984-, et al. (författare)
  • Genetic structure and demographic history of the endangered tree species, Dysoxylum  malabaricum (Meliaceae) in Western Ghats, India : Implications for conservation in a  biodiversity hotspot
  • 2013
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 3:10, s. 3233-3248
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylummalabaricum (white cedar) is an economically important tree species, endemic to theWestern Ghats, India, one of the world's eight most important biodiversity hotspots. As D.malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range-widegenetic structure of twelve D.malabaricum populations was evaluated to assess the impact ofhuman activities on genetic diversity and infer the species' evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old-growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (F-IS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation-based inference from nuclear SSRs suggested that population divergence occurred beforethe last glacial maximum. Finally we discussed the implications of these results, in particularthe presence of a clear pattern of historical genetic subdivision, on conservation policies.
  •  
11.
  •  
12.
  • Bodare, Sofia, 1984-, et al. (författare)
  • Origin and demographic history of the endemic Taiwan spruce (Picea morrisonicola)
  • 2013
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 3:10, s. 3320-3333
  • Tidskriftsartikel (refereegranskat)abstract
    • Taiwan spruce (Picea morrisonicola) is a vulnerable conifer species endemic to the island of Taiwan. A warming climate and competition from subtropical tree species has limited the range of Taiwan spruce to the higher altitudes of the island. Using seeds sampled from an area in the central mountain range of Taiwan, 15 nuclear loci were sequenced in order to measure genetic variation and to assess the long-term genetic stability of the species. Genetic diversity is low and comparable to other spruce species with limited ranges such as Picea breweriana, Picea chihuahuana, and Picea schrenkiana. Importantly, analysis using approximate Bayesian computation (ABC) provides evidence for a drastic decline in the effective population size approximately 0.3–0.5 million years ago (mya). We used simulations to show that this is unlikely to be a false-positive result due to the limited sample used here. To investigate the phylogenetic origin of Taiwan spruce, additional sequencing was performed in the Chinese spruce Picea wilsonii and combined with previously published data for three other mainland China species, Picea purpurea, Picea likiangensis, and P. schrenkiana. Analysis of population structure revealed that P. morrisonicola clusters most closely with P. wilsonii, and coalescent analyses using the program MIMAR dated the split to 4–8 mya, coincidental to the formation of Taiwan. Considering the population decrease that occurred after the split, however, led to a much more recent origin.
  •  
13.
  •  
14.
  • Brousseau, Louise, et al. (författare)
  • Local Adaptation in European Firs Assessed through Extensive Sampling across Altitudinal Gradients in Southern Europe
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Local adaptation is a key driver of phenotypic and genetic divergence at loci responsible for adaptive traits variations in forest tree populations. Its experimental assessment requires rigorous sampling strategies such as those involving population pairs replicated across broad spatial scales. Methods A hierarchical Bayesian model of selection (HBM) that explicitly considers both the replication of the environmental contrast and the hierarchical genetic structure among replicated study sites is introduced. Its power was assessed through simulations and compared to classical 'within-site' approaches (FDIST, BAYESCAN) and a simplified, within-site, version of the model introduced here (SBM). Results HBM demonstrates that hierarchical approaches are very powerful to detect replicated patterns of adaptive divergence with low false-discovery (FDR) and false-non-discovery (FNR) rates compared to the analysis of different sites separately through within-site approaches. The hypothesis of local adaptation to altitude was further addressed by analyzing replicated Abies alba population pairs (low and high elevations) across the species' southern distribution range, where the effects of climatic selection are expected to be the strongest. For comparison, a single population pair from the closely related species A. cephalonica was also analyzed. The hierarchical model did not detect any pattern of adaptive divergence to altitude replicated in the different study sites. Instead, idiosyncratic patterns of local adaptation among sites were detected by within-site approaches. Conclusion Hierarchical approaches may miss idiosyncratic patterns of adaptation among sites, and we strongly recommend the use of both hierarchical (multi-site) and classical (within-site) approaches when addressing the question of adaptation across broad spatial scales.
  •  
15.
  •  
16.
  • Chen, Jun, et al. (författare)
  • Clinal Variation at Phenology-Related Genes in Spruce : Parallel Evolution in FTL2 and Gigantea?
  • 2014
  • Ingår i: Genetics. - : Oxford University Press (OUP). - 0016-6731 .- 1943-2631. ; 197:3, s. 1025-1038
  • Tidskriftsartikel (refereegranskat)abstract
    • Parallel clines in different species, or in different geographical regions of the same species, are an important source of information on the genetic basis of local adaptation. We recently detected latitudinal clines in SNPs frequencies and gene expression of candidate genes for growth cessation in Scandinavian populations of Norway spruce (Picea abies). Here we test whether the same clines are also present in Siberian spruce (P. obovata), a close relative of Norway spruce with a different Quaternary history. We sequenced nine candidate genes and 27 control loci and genotyped 14 SSR loci in six populations of P. obovata located along the Yenisei river from latitude 56 N to latitude 67 N. In contrast to Scandinavian Norway spruce that both departs from the standard neutral model (SNM) and shows a clear population structure, Siberian spruce populations along the Yenisei do not depart from the SNM and are genetically unstructured. Nonetheless, as in Norway spruce, growth cessation is significantly clinal. Polymorphisms in photoperiodic (FTL2) and circadian clock (Gigantea, GI, PRR3) genes also show significant clinal variation and/or evidence of local selection. In GI, one of the variants is the same as in Norway spruce. Finally, a strong cline in gene expression is observed for FTL2, but not for GI. These results, together with recent physiological studies, confirm the key role played by FTL2 and circadian clock genes in the control of growth cessation in spruce species and suggest the presence of parallel adaptation in these two species.
  •  
17.
  •  
18.
  •  
19.
  • Chen, Jun (författare)
  • Conifer Evolution, from Demography and Local Adaptation to Evolutionary Rates : Examples from the Picea genus
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Evolutionary process can be inferred at three different levels: the species level, the population level and the molecular level. In this thesis, I applied approaches at these three levels and aimed to get a comprehensive picture of conifer evolution, from speciation and demography to geographic variation and local adaptation, and then to the molecular evolution of proteins and small regulatory RNAs.Spruce species have been observed to possess a large number of trans-species shared polymorphisms. Using an “Isolation with migration” model, we found that the large effective population size of spruce retained these shared polymorphisms, inheriting them from the common ancestor. Post-divergence gene flow only existed between Picea abies and P. glauca, and between P. wilsonii and P. schrenkiana. The combination of Tajima’s D and Fay & Wu’s H at most of loci suggested an ancient and severe bottleneck for most species except P. breweriana.Furthermore, I investigated the effect of local selection in two parallel clines, which is one of the major forces that can cause divergence or even speciation. The timing of bud set and growth cessation was found correlated with latitude in populations of P. abies and P. obovata. Using allele frequency spectrum analyses we identified three genes under local selection in both species including two circadian-clock genes GI and PRR7, and one photoperiodic gene FTL2. This indicated that parallel evolution could occur through groups of genes within related pathways. Clinal variation at expression level provided stronger evidence of selection in FTL2, which has previously been associated with bud set in P. abies.Finally we focused on the molecular evolution of mRNA and small regulatory RNAs in P. abies. With the help of Next-Generation sequencing, we have achieved in spruce the first de novel assembly of the needle transcriptome and a preliminary characterization of sRNA populations. Along with features common in plants, spruce also exhibited novelties in many aspects including lower substitution rate and protein evolutionary rate, dominance of 21-nt sRNA, and a large proportion of TIR-NBS-LRR genes as sRNA sources and targets.
  •  
20.
  • Chen, Jun, et al. (författare)
  • Disentangling the Roles of History and Local Selection in Shaping Clinal Variation of Allele Frequencies and Gene Expression in Norway Spruce (Picea abies)
  • 2012
  • Ingår i: Genetics. - : Oxford University Press (OUP). - 0016-6731 .- 1943-2631. ; 191:3, s. 865-881
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the genetic basis of local adaptation is challenging due to the subtle balance among conflicting evolutionary forces that are involved in its establishment and maintenance. One system with which to tease apart these difficulties is clines in adaptive characters. Here we analyzed genetic and phenotypic variation in bud set, a highly heritable and adaptive trait, among 18 populations of Norway spruce (Picea abies), arrayed along a latitudinal gradient ranging from 47°N to 68°N. We confirmed that variation in bud set is strongly clinal, using a subset of five populations. Genotypes for 137 single-nucleotide polymorphisms (SNPs) chosen from 18 candidate genes putatively affecting bud set and 308 control SNPs chosen from 264 random genes were analyzed for patterns of genetic structure and correlation to environment. Population genetic structure was low (F(ST) = 0.05), but latitudinal patterns were apparent among Scandinavian populations. Hence, part of the observed clinal variation should be attributable to population demography. Conditional on patterns of genetic structure, there was enrichment of SNPs within candidate genes for correlations with latitude. Twenty-nine SNPs were also outliers with respect to F(ST). The enrichment for clinal variation at SNPs within candidate genes (i.e., SNPs in PaGI, PaPhyP, PaPhyN, PaPRR7, and PaFTL2) indicated that local selection in the 18 populations, and/or selection in the ancestral populations from which they were recently derived, shaped the observed cline. Validation of these genes using expression studies also revealed that PaFTL2 expression is significantly associated with latitude, thereby confirming the central role played by this gene in the control of phenology in plants.
  •  
21.
  • Chen, Jun, et al. (författare)
  • From Drift to Draft : How Much Do Beneficial Mutations Actually Contribute to Predictions of Ohta's Slightly Deleterious Model of Molecular Evolution?
  • 2020
  • Ingår i: Genetics. - : GENETICS SOCIETY AMERICA. - 0016-6731 .- 1943-2631. ; 214:4, s. 1005-1018
  • Tidskriftsartikel (refereegranskat)abstract
    • Since its inception in 1973, the slightly deleterious model of molecular evolution, also known as the nearly neutral theory of molecular evolution, remains a central model to explain the main patterns of DNA polymorphism in natural populations. This is not to say that the quantitative fit to data are perfect. A recent study used polymorphism data from Drosophila melanogaster to test whether, as predicted by the nearly neutral theory, the proportion of effectively neutral mutations depends on the effective population size (N-e). It showed that a nearly neutral model simply scaling with N-e variation across the genome could not alone explain the data, but that consideration of linked positive selection improves the fit between observations and predictions. In the present article, we extended the work in two main directions. First, we confirmed the observed pattern on a set of 59 species, including high-quality genomic data from 11 animal and plant species with different mating systems and effective population sizes, hence a priori different levels of linked selection. Second, for the 11 species with high-quality genomic data we also estimated the full distribution of fitness effects (DFE) of mutations, and not solely the DFE of deleterious mutations. Both N-e and beneficial mutations contributed to the relationship between the proportion of effectively neutral mutations and local N-e across the genome. In conclusion, the predictions of the slightly deleterious model of molecular evolution hold well for species with small N-e, but for species with large N-e, the fit is improved by incorporating linked positive selection to the model.
  •  
22.
  • Chen, Jun, et al. (författare)
  • Genetic Diversity and the Efficacy of Purifying Selection across Plant and Animal Species
  • 2017
  • Ingår i: Molecular biology and evolution. - : OXFORD UNIV PRESS. - 0737-4038 .- 1537-1719. ; 34:6, s. 1417-1428
  • Tidskriftsartikel (refereegranskat)abstract
    • A central question in evolutionary biology is why some species have more genetic diversity than others and a no less important question is why selection efficacy varies among species. Although these questions have started to be tackled in animals, they have not been addressed to the same extent in plants. Here, we estimated nucleotide diversity at synonymous, pi(S), and nonsynonymous sites, pi(N), and a measure of the efficacy of selection, the ratio pi(N)/pi(S), in 34 animal and 28 plant species using full genome data. We then evaluated the relationship of nucleotide diversity and selection efficacy with effective population size, the distribution of fitness effect and life history traits. In animals, our data confirm that longevity and propagule size are the variables that best explain the variation in pi(S) among species. In plants longevity also plays a major role as well as mating system. As predicted by the nearly neutral theory of molecular evolution, the log of pi(N)/pi(S) decreased linearly with the log of pi(S) but the slope was weaker in plants than in animals. This appears to be due to a higher mutation rate in long lived plants, and the difference disappears when pi(S) is rescaled by the mutation rate. Differences in the distribution of fitness effect of new mutations also contributed to variation in pi(N)/pi(S) among species.
  •  
23.
  • Chen, Jun, et al. (författare)
  • Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce
  • 2019
  • Ingår i: Evolutionary Applications. - : WILEY. - 1752-4571. ; 12:8, s. 1539-1551
  • Tidskriftsartikel (refereegranskat)abstract
    • Primeval forests are today exceedingly rare in Europe, and transfer of forest reproductive material for afforestation and improvement has been very common, especially over the last two centuries. This can be a serious impediment when inferring past population movements in response to past climate changes such as the last glacial maximum (LGM), some 18,000 years ago. In the present study, we genotyped 1,672 individuals from three Picea species (P. abies, P. obovata, and P. omorika) at 400K SNPs using exome capture to infer the past demographic history of Norway spruce (P. abies) and estimate the amount of recent introduction used to establish the Norway spruce breeding program in southern Sweden. Most of these trees belong to P. abies and originate from the base populations of the Swedish breeding program. Others originate from populations across the natural ranges of the three species. Of the 1,499 individuals stemming from the breeding program, a large proportion corresponds to recent introductions from mainland Europe. The split of P. omorika occurred 23 million years ago (mya), while the divergence between P. obovata and P. abies began 17.6 mya. Demographic inferences retrieved the same main clusters within P. abies than previous studies, that is, a vast northern domain ranging from Norway to central Russia, where the species is progressively replaced by Siberian spruce (P. obovata) and two smaller domains, an Alpine domain and a Carpathian one, but also revealed further subdivision and gene flow among clusters. The three main domains divergence was ancient (15 mya), and all three went through a bottleneck corresponding to the LGM. Approximately 17% of P. abies Nordic domain migrated from P. obovata ~103K years ago, when both species had much larger effective population sizes. Our analysis of genomewide polymorphism data thus revealed the complex demographic history of Picea genus in Western Europe and highlighted the importance of material transfer in Swedish breeding program.
  •  
24.
  • Chen, Jun, et al. (författare)
  • Hunting for Beneficial Mutations : Conditioning on SIFT Scores When Estimating the Distribution of Fitness Effect of New Mutations
  • 2022
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The distribution of fitness effects (DFE) of new mutations is a key parameter of molecular evolution. The DFE can in principle be estimated by comparing the site frequency spectra (SFS) of putatively neutral and functional polymorphisms. Unfortunately, the DFE is intrinsically hard to estimate, especially for beneficial mutations because these tend to be exceedingly rare. There is therefore a strong incentive to find out whether conditioning on properties of mutations that are independent of the SFS could provide additional information. In the present study, we developed a new measure based on SIFT scores. SIFT scores are assigned to nucleotide sites based on their level of conservation across a multispecies alignment: the more conserved a site, the more likely mutations occurring at this site are deleterious, and the lower the SIFT score. If one knows the ancestral state at a given site, one can assign a value to new mutations occurring at the site based on the change of SIFT score associated with the mutation. We called this new measure delta. We show that properties of the DFE as well as the flux of beneficial mutations across classes covary with delta and, hence, that SIFT scores are informative when estimating the fitness effect of new mutations. In particular, conditioning on SIFT scores can help to characterize beneficial mutations.
  •  
25.
  • Chen, Jun, et al. (författare)
  • Identifying Genetic Signatures of Natural Selection Using Pooled Population Sequencing in Picea abies
  • 2016
  • Ingår i: G3. - : Oxford University Press (OUP). - 2160-1836. ; 6:7, s. 1979-1989
  • Tidskriftsartikel (refereegranskat)abstract
    • The joint inference of selection and past demography remain a costly and demanding task. We used next generation sequencing of two pools of 48 Norway spruce mother trees, one corresponding to the Fennoscandian domain, and the other to the Alpine domain, to assess nucleotide polymorphism at 88 nuclear genes. These genes are candidate genes for phenological traits, and most belong to the photoperiod pathway. Estimates of population genetic summary statistics from the pooled data are similar to previous estimates, suggesting that pooled sequencing is reliable. The nonsynonymous SNPs tended to have both lower frequency differences and lower F-ST values between the two domains than silent ones. These results suggest the presence of purifying selection. The divergence between the two domains based on synonymous changes was around 5 million yr, a time similar to a recent phylogenetic estimate of 6 million yr, but much larger than earlier estimates based on isozymes. Two approaches, one of them novel and that considers both F-ST and difference in allele frequencies between the two domains, were used to identify SNPs potentially under diversifying selection. SNPs from around 20 genes were detected, including genes previously identified as main target for selection, such as PaPRR3 and PaGI.
  •  
26.
  • Chen, Jun, et al. (författare)
  • Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L.) reveals lower substitution rates, but similar selective constraints in gymnosperms compared to angiosperms
  • 2012
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 13, s. 589-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background: A detailed knowledge about which genes are expressed in which tissues and at which developmental stage is important for understanding both the function of genes and their evolution. For the vast majority of species, transcriptomes are still largely uncharacterized and even in those where substantial information is available it is often in the form of partially sequenced transcriptomes. With the development of next generation sequencing, a single experiment can now give both a snap-shot of the transcribed part of a species genome and simultaneously estimate levels of gene expression.Results: mRNA from actively growing needles of Norway spruce (Picea abies) was sequenced using next generation sequencing technology. In total, close to 70 million fragments with a length of 76 bp were sequenced resulting in 5 Gbp of raw data. A de novo assembly of these reads were, together with publicly available expressed sequence tag (EST) data from Norway spruce, used to create a reference transcriptome. Of the 38,419 PUTs (putative unique transcripts) longer than 150 bp in this reference assembly, 59% show similarity to ESTs from other spruce species and of the remaining PUTs, 3,704 show similarity to protein sequences from other plant species, leaving 4,167 PUTs with limited similarity to currently available plant proteins. By predicting coding frames and comparing not only the Norway spruce PUTs, but also PUTs from the close relatives Picea glauca and Picea sitchensis to both Pinus taeda and Taxus mairei, we obtained estimates of synonymous and non-synonymous divergence among conifer species. In addition, we detected close to 15,000 SNPs of high quality and estimated gene expression difference between samples collected during dark and light conditions.Conclusions: Our study yielded a large number of single nucleotide polymorphisms as well as estimates of gene expression on transcriptome scale. In agreement with a recent study we find that the synonymous substitution rate per year (0.6 × 10-09 and 1.1 × 10-09) is an order of magnitude smaller than values reported for angiosperm herbs, but if one takes generation time in to account, most of this difference disappear. The estimates of the non-synonymous over the synonymous divergence (dN/dS ratio) reported here is in general much lower than 1 and only a few genes showed a ratio larger than 1.
  •  
27.
  • Chen, Jun, et al. (författare)
  • What does the distribution of fitness effects of new mutations reflect? : Insights from plants
  • 2022
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 233:4, s. 1613-1619
  • Forskningsöversikt (refereegranskat)abstract
    • The distribution of fitness effects (DFE) of new mutations plays a central role in molecular evolution. It is therefore crucial to be able to estimate it accurately from genomic data and to understand the factors that shape it. After a rapid overview of available methods to characterize the fitness effects of mutations, we review what is known on the factors affecting them in plants. Available data indicate that life history traits (e.g. mating system and longevity) have a major effect on the DFE. By contrast, the impact of demography within species appears to be more limited. These results remain to be confirmed, and methods to estimate the joint evolution of demography, life history traits, and the DFE need to be developed.
  •  
28.
  • Chen, Zhi-Qiang, et al. (författare)
  • Leveraging breeding programs and genomic data in Norway spruce (Picea abies L. Karst) for GWAS analysis
  • 2021
  • Ingår i: Genome Biology. - : BioMed Central (BMC). - 1465-6906 .- 1474-760X. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genome-wide association studies (GWAS) identify loci underlying the variation of complex traits. One of the main limitations of GWAS is the availability of reliable phenotypic data, particularly for long-lived tree species. Although an extensive amount of phenotypic data already exists in breeding programs, accounting for its high heterogeneity is a great challenge. We combine spatial and factor-analytics analyses to standardize the heterogeneous data from 120 field experiments of 483,424 progenies of Norway spruce to implement the largest reported GWAS for trees using 134 605 SNPs from exome sequencing of 5056 parental trees.Results: We identify 55 novel quantitative trait loci (QTLs) that are associated with phenotypic variation. The largest number of QTLs is associated with the budburst stage, followed by diameter at breast height, wood quality, and frost damage. Two QTLs with the largest effect have a pleiotropic effect for budburst stage, frost damage, and diameter and are associated with MAP3K genes. Genotype data called from exome capture, recently developed SNP array and gene expression data indirectly support this discovery.Conclusion: Several important QTLs associated with growth and frost damage have been verified in several southern and northern progeny plantations, indicating that these loci can be used in QTL-assisted genomic selection. Our study also demonstrates that existing heterogeneous phenotypic data from breeding programs, collected over several decades, is an important source for GWAS and that such integration into GWAS should be a major area of inquiry in the future.
  •  
29.
  • Chen, Zeyuan, et al. (författare)
  • Survival in the Tropics despite isolation, inbreeding and asexual reproduction : insights from the genome of the world's southernmost poplar (Populus ilicifolia)
  • 2020
  • Ingår i: The Plant Journal. - : Wiley. - 0960-7412 .- 1365-313X. ; 103:1, s. 430-442
  • Tidskriftsartikel (refereegranskat)abstract
    • Species are becoming extinct at unprecedented rates as a consequence of human activity. Hence it is important to understand the evolutionary dynamics of species with already small population sizes. Populus ilicifolia is a vulnerable poplar species that is isolated from other poplar species and is uniquely adapted to the Tropics. It has a very limited size, reproduces partly clonally and is therefore an excellent case study for conservation genomics. We present here the first annotated draft genome of P. ilicifolia, characterize genome-wide patterns of polymorphisms and compare those to other poplar species with larger natural ranges. P. ilicifolia experienced a more prolonged and severe decline of effective population size (Ne) and signs of genetic erosion than any other poplar species with which it was compared. At present, the species has the lowest genome-wide genetic diversity, the highest abundance of long runs of homozygosity, high inbreeding levels as well as a high overall accumulation of deleterious variants. However, more effective purging of severely deleterious variants and adaptation to the Tropics may have contributed to its survival. Hence, in spite of its limited genetic variation, it is certainly worth pursuing the conservation efforts of this unique species.
  •  
30.
  • Corcoran, Pádraic, et al. (författare)
  • A global multilocus analysis of the model fungus Neurospora reveals a single recent origin of a novel genetic system
  • 2014
  • Ingår i: Molecular Phylogenetics and Evolution. - : Elsevier BV. - 1055-7903 .- 1095-9513. ; 78, s. 136-147
  • Tidskriftsartikel (refereegranskat)abstract
    • The large diversity of mating systems observed in the fungal kingdom underlines the importance of mating system change in fungal evolution. The selfing species Neurospora tetrasperma has evolved a novel method of achieving self-fertility by a mating system referred to as pseudohomothallism. However, little is known about the origin of N. tetrasperma and its relationship to the self-sterile, heterothallic, Neurospora species. In this study, we used a combination of phylogenetic and population genetic analyses to reconstruct the evolutionary history of N. tetrasperma and its heterothallic relatives. We sequenced 9 unlinked nuclear loci from 106 strains of N. tetrasperma sampled from across the globe, and a sample of 28 heterothallic strains of Neurospora. Our analyses provide strong support for monophyly of N. tetrasperma, but reject the monophyly of N. crassa. We estimate that N. tetrasperma is of a recent origin and that it diverged from the heterothallic species ~1 million years ago. We also extend previous findings on the diversification within the N. tetrasperma clade, with 10 lineages identified. Taken together, these findings indicate that N. tetrasperma is younger than has been previously reported and that a rapid diversification of lineages has occurred within the N. tetrasperma clade.
  •  
31.
  •  
32.
  • Corcoran, Padraic, et al. (författare)
  • Introgression maintains the genetic integrity of the mating-type determining chromosome of the fungus Neurospora tetrasperma.
  • 2016
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 26:4, s. 486-498
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome evolution is driven by a complex interplay of factors, including selection, recombination, and introgression. The regions determining sexual identity are particularly dynamic parts of eukaryotic genomes that are prone to molecular degeneration associated with suppressed recombination. In the fungus Neurospora tetrasperma, it has been proposed that this molecular degeneration is counteracted by the introgression of nondegenerated DNA from closely related species. In this study, we used comparative and population genomic analyses of 92 genomes from eight phylogenetically and reproductively isolated lineages of N. tetrasperma, and its three closest relatives, to investigate the factors shaping the evolutionary history of the genomes. We found that suppressed recombination extends across at least 6 Mbp (similar to 63%) of the mating-type (mat) chromosome in N. tetrasperma and is associated with decreased genetic diversity, which is likely the result primarily of selection at linked sites. Furthermore, analyses of molecular evolution revealed an increased mutational load in this region, relative to recombining regions. However, comparative genomic and phylogenetic analyses indicate that the mat chromosomes are temporarily regenerated via introgression from sister species; six of eight lineages show introgression into one of their mat chromosomes, with multiple Neurospora species acting as donors. The introgressed tracts have been fixed within lineages, suggesting that they confer an adaptive advantage in natural populations, and our analyses support the presence of selective sweeps in at least one lineage. Thus, these data strongly support the previously hypothesized role of introgression as a mechanism for the maintenance of mating-type determining chromosomal regions.
  •  
33.
  • Cornille, Amandine, et al. (författare)
  • Genomic signature of successful colonization of Eurasia by the allopolyploid shepherd's purse (Capsella bursa-pastoris)
  • 2016
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 25:2, s. 616-629
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyploidization is a dominant feature of flowering plant evolution. However, detailed genomic analyses of the interpopulation diversification of polyploids following genome duplication are still in their infancy, mainly because of methodological limits, both in terms of sequencing and computational analyses. The shepherd's purse (Capsella bursa-pastoris) is one of the most common weed species in the world. It is highly self-fertilizing, and recent genomic data indicate that it is an allopolyploid, resulting from hybridization between the ancestors of the diploid species Capsella grandiflora and Capsella orientalis. Here, we investigated the genomic diversity of C.bursa-pastoris, its population structure and demographic history, following allopolyploidization in Eurasia. To that end, we genotyped 261 C.bursa-pastoris accessions spread across Europe, the Middle East and Asia, using genotyping-by-sequencing, leading to a total of 4274 SNPs after quality control. Bayesian clustering analyses revealed three distinct genetic clusters in Eurasia: one cluster grouping samples from Western Europe and Southeastern Siberia, the second one centred on Eastern Asia and the third one in the Middle East. Approximate Bayesian computation (ABC) supported the hypothesis that C.bursa-pastoris underwent a typical colonization history involving low gene flow among colonizing populations, likely starting from the Middle East towards Europe and followed by successive human-mediated expansions into Eastern Asia. Altogether, these findings bring new insights into the recent multistage colonization history of the allotetraploid C.bursa-pastoris and highlight ABC and genotyping-by-sequencing data as promising but still challenging tools to infer demographic histories of selfing allopolyploids.
  •  
34.
  • Cornille, Amandine, et al. (författare)
  • The relative role of plasticity and demographic history in Capsella bursa-pastoris : a common garden experiment in Asia and Europe
  • 2022
  • Ingår i: AoB Plants. - : Oxford University Press (OUP). - 2041-2851. ; 14:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The respective role of demography, plasticity and adaptation in the colonization success of plant species remains an intense topic of investigation in evolutionary ecology and genomics. A screening of phenotypic traits of hundreds of genotypes in large-scale common garden experiments in Eastern Asia and Europe shows that both demography and a high phenotypic plasticity underlie the success of the tetraploid and self-fertilizing species, Capsella bursa-pastoris, the shepherd's purse, at different stages of expansion. This study provides insight into the causes of the ecological success of a plant species during range expansion. The colonization success of a species depends on the interplay between its phenotypic plasticity, adaptive potential and demographic history. Assessing their relative contributions during the different phases of a species range expansion is challenging, and requires large-scale experiments. Here, we investigated the relative contributions of plasticity, performance and demographic history to the worldwide expansion of the shepherd's purse, Capsella bursa-pastoris. We installed two large common gardens of the shepherd's purse, a young, self-fertilizing, allopolyploid weed with a worldwide distribution. One common garden was located in Europe, the other in Asia. We used accessions from three distinct genetic clusters (Middle East, Europe and Asia) that reflect the demographic history of the species. Several life-history traits were measured. To explain the phenotypic variation between and within genetic clusters, we analysed the effects of (i) the genetic clusters, (ii) the phenotypic plasticity and its association to fitness and (iii) the distance in terms of bioclimatic variables between the sampling site of an accession and the common garden, i.e. the environmental distance. Our experiment showed that (i) the performance of C. bursa-pastoris is closely related to its high phenotypic plasticity; (ii) within a common garden, genetic cluster was a main determinant of phenotypic differences; and (iii) at the scale of the experiment, the effect of environmental distance to the common garden could not be distinguished from that of genetic clusters. Phenotypic plasticity and demographic history both play important role at different stages of range expansion. The success of the worldwide expansion of C. bursa-pastoris was undoubtedly influenced by its strong phenotypic plasticity.
  •  
35.
  • Das, S, et al. (författare)
  • Black mustard
  • 2006
  • Ingår i: Genome mapping and molecular breeding in plants. - : Springer. - 9783540343875
  • Bokkapitel (refereegranskat)
  •  
36.
  • Douglas, Gavin M., et al. (författare)
  • Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:9, s. 2806-2811
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-genome duplication (WGD) events have occurred repeatedly during flowering plant evolution, and there is growing evidence for predictable patterns of gene retention and loss following polyploidization. Despite these important insights, the rate and processes governing the earliest stages of diploidization remain poorly understood, and the relative importance of genetic drift, positive selection, and relaxed purifying selection in the process of gene degeneration and loss is unclear. Here, we conduct whole-genome resequencing in Capsella bursa-pastoris, a recently formed tetraploid with one of the most widespread species distributions of any angiosperm. Whole-genome data provide strong support for recent hybrid origins of the tetraploid species within the past 100,000-300,000 y from two diploid progenitors in the Capsella genus. Major-effect inactivating mutations are frequent, but many were inherited from the parental species and show no evidence of being fixed by positive selection. Despite a lack of large-scale gene loss, we observe a decrease in the efficacy of natural selection genome-wide due to the combined effects of demography, selfing, and genome redundancy from WGD. Our results suggest that the earliest stages of diploidization are associated with quantitative genome-wide decreases in the strength and efficacy of selection rather than rapid gene loss, and that non-functionalization can receive a head start through a legacy of deleterious variants and differential expression originating in parental diploid populations.
  •  
37.
  • Du, Fang K., et al. (författare)
  • Direction and extent of organelle DNA introgression between two spruce species in the Qinghai-Tibetan Plateau
  • 2011
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 192:4, s. 1024-1033
  • Tidskriftsartikel (refereegranskat)abstract
    • A recent model has shown that, during range expansion of one species in a territory already occupied by a related species, introgression should take place preferentially from the resident species towards the invading species and genome components experiencing low rates of gene flow should introgress more readily than those experiencing high rates of gene flow. Here, we use molecular markers from two organelle genomes with contrasted rates of gene flow to test these predictions by examining genetic exchanges between two morphologically distinct spruce Picea species growing in the Qinghai-Tibetan Plateau. The haplotypes from both mitochondrial (mt) DNA and chloroplast (cp) DNA cluster into two distinct lineages that differentiate allopatric populations of the two species. By contrast, in sympatry, the species share the same haplotypes, suggesting interspecific genetic exchanges. As predicted by the neutral model, all sympatric populations of the expanding species had received their maternally inherited mtDNA from the resident species, whereas for paternally inherited cpDNA introgression is more limited and not strictly unidirectional. Our results underscore cryptic introgressions of organelle DNAs in plants and the importance of considering rates of gene flow and range shifts to predict direction and extent of interspecific genetic exchanges.
  •  
38.
  • Duan, Tianlin, et al. (författare)
  • Expression pattern of resynthesized allotetraploid Capsella is determined by hybridization, not whole genome duplication
  • 2023
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 237:1, s. 339-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyploidization, the process leading to the increase in chromosome sets, is a major evolutionary transition in plants. Whole-genome duplication (WGD) within the same species gives rise to autopolyploids, whereas allopolyploids result from a compound process with two distinct components: WGD and interspecific hybridization.To dissect the instant effects of WGD and hybridization on gene expression and phenotype, we created a series of synthetic hybrid and polyploid Capsella plants, including diploid hybrids, autotetraploids of both parental species, and two kinds of resynthesized allotetraploids with different orders of WGD and hybridization.Hybridization played a major role in shaping the relative expression pattern of the neo-allopolyploids, whereas WGD had almost no immediate effect on relative gene expression pattern but, nonetheless, still affected phenotypes. No transposable element-mediated genomic shock scenario was observed in either neo-hybrids or neo-polyploids. Finally, WGD and hybridization interacted and the distorting effects of WGD were less strong in hybrids. Whole-genome duplication may even improve hybrid fertility.In summary, while the initial relative gene expression pattern in neo-allotetraploids was almost entirely determined by hybridization, WGD only had trivial effects on relative expression patterns, both processes interacted and had a strong impact on physical attributes and meiotic behaviors.
  •  
39.
  • Duan, Tianlin (författare)
  • Genomic and phenotypic consequences of allopolyploidization in Capsella
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Allopolyploidization, the combination of whole-genome duplication (WGD) and interspecific hybridization, is a frequent and influential event in plant evolution. Allopolyploidization potentially affects both adaptation and diversification, yet the understanding of the consequences of allopolyploidy has been obscured by several issues. First, a broadly defined phenomenon, “genomic shock”, is assumed to be a general instant outcome of allopolyploidization, but this assumption has been challenged by recent studies. Second, effects of WGD and interspecific hybridization are confounded in allopolyploidization, which hinders the understanding of the specific effects of either component. Third, in natural allopolyploid species, instant and long-term effects of allopolyploidization are mixed, masking the evolution trajectory of allopolyploid genomes. To address these issues, we studied the outcome of allopolyploidization in Capsella bursa-pastoris, a 100,000-year-old natural allotetraploid species. C. bursa-pastoris is a self-fertilizing weed with a worldwide distribution that originated through the hybridization between two diploid Capsella species with distinct mating systems. First, we investigated gene expression pattern in natural C. bursa-pastoris accessions with DNA- and  RNA-sequencing data. Next, we resynthesized C. bursa-pastoris-like allotetraploids, along with diploid hybrids and autotetraploids. Phenotype and gene expression patterns were compared among those synthetic Capsella plants and natural C. bursa-pastoris to (i) distinguish the instant effects of hybridization from WGD and (ii) tell apart instant effects from long-term ones.In general, non-additive gene expression was limited in both natural and resynthesized C. bursa-pastoris. We found the original TE-mediated genomic shock hypothesis did not fit the consequences of allopolyploidization in Capsella. Instead, homoeolog expression bias and the limited non-additive gene expression in resynthesized can be better explained by homoeologous exchanges and the intergenomic interaction of regulatory elements. The relative gene expression pattern in resynthesized C. bursa-pastoris was mainly determined by hybridization, not WGD, but WGD still significantly affected phenotypes, likely through altering cell-size-related physical attributes. Both WGD and hybridization decrease the quality of pollen and seeds, but the two events were less deleterious when combined. In addition, the breakdown of self-incompatibility in Capsella could not be induced by pure WGD but was caused by the dominant interactions between S-alleles in hybrids.Both gene expression patterns and phenotypes of C. bursa-pastoris were largely reshaped by long-term evolution. Almost all the transgressive gene expressions were unique to natural C. bursa-pastoris. Similarly, selfing syndrome and improvement of pollen and seed quality were likely acquired through long-term evolution. Compared to resynthesized allotetraploids, natural C. bursa-pastoris had more expression-level dominance toward the self-fertilizing parent, especially in flowers, mirroring a pronounced selfing syndrome. Nonetheless, the instant effect of allopolyploidization did contribute to gene expression patterns, as about 40% of expression level dominance in natural C. bursa-pastoris can already be found in resynthesized allotetraploids.
  •  
40.
  • Duan, Tianlin, et al. (författare)
  • Separating phases of allopolyploid evolution with resynthesized and natural Capsella bursa-pastoris
  • 2024
  • Ingår i: eLIFE. - : eLife Sciences Publications Ltd. - 2050-084X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Allopolyploidization is a frequent evolutionary transition in plants that combines whole-genome duplication (WGD) and interspecific hybridization. The genome of an allopolyploid species results from initial interactions between parental genomes and long-term evolution. Distinguishing the contributions of these two phases is essential to understanding the evolutionary trajectory of allopolyploid species. Here, we compared phenotypic and transcriptomic changes in natural and resynthesized Capsella allotetraploids with their diploid parental species. We focused on phenotypic traits associated with the selfing syndrome and on transcription-level phenomena such as expression-level dominance (ELD), transgressive expression (TRE), and homoeolog expression bias (HEB). We found that selfing syndrome, high pollen, and seed quality in natural allotetraploids likely resulted from long-term evolution. Similarly, TRE and most down-regulated ELD were only found in natural allopolyploids. Natural allotetraploids also had more ELD toward the self-fertilizing parental species than resynthesized allotetraploids, mirroring the establishment of the selfing syndrome. However, short-term changes mattered, and 40% of the cases of ELD in natural allotetraploids were already observed in resynthesized allotetraploids. Resynthesized allotetraploids showed striking variation of HEB among chromosomes and individuals. Homoeologous synapsis was its primary source and may still be a source of genetic variation in natural allotetraploids. In conclusion, both short- and long-term mechanisms contributed to transcriptomic and phenotypic changes in natural allotetraploids. However, the initial gene expression changes were largely reshaped during long-term evolution leading to further morphological changes.
  •  
41.
  •  
42.
  •  
43.
  • Dymshakova, O. S., et al. (författare)
  • AFLP analysis to estimate the genetic contribution of parents to progeny from hybridization between Saxifraga sibirica L. and S. cernua L.
  • 2012
  • Ingår i: Russian journal of ecology. - 1067-4136 .- 1608-3334. ; 43:5, s. 347-351
  • Tidskriftsartikel (refereegranskat)abstract
    • It is shown that the method of amplified fragment length polymorphism (AFLP) can be used to estimate the contribution of parent plants to the genome of the progeny from artificial crosses between Saxifraga cernua and S. sibirica. According to Nei's (1972) genetic distances between plant groups, F-1 plants are intermediate between the parent species but closer to S. cernua, probably because its genome size is twice that of S. sibirica. Conversely, B-1 plants proved to be closer to S. sibirica, because the hybrid progeny were crossed back to this species.
  •  
44.
  • Fady, Bruno, et al. (författare)
  • Genetics to the rescue : managing forests sustainably in a changing world
  • 2020
  • Ingår i: Tree Genetics & Genomes. - : SPRINGER HEIDELBERG. - 1614-2942 .- 1614-2950. ; 16:6
  • Tidskriftsartikel (refereegranskat)abstract
    • There is growing concern that the implementation of political agreements on climate change and biodiversity will not be enough to protect forests in the short run and up to the end of the 21st century. As mitigation efforts are lagging behind self-imposed, reasonable targets, genetic diversity will have a large and significant part to play in the process of adapting forests to climate change. Genetic diversity, the raw material of evolution, can be used for adaptation by natural selection and artificial breeding, in naturally regenerated and plantation forests alike. The 2-day scientific conference: "#rescueforests: Genetics to the rescue - Managing forests sustainably in a changing world," addressed the genetic diversity of forests. More specifically, the conference was about natural as well as assisted adaptive processes, their spatial scale, from fine grain to landscape and ecoregions, and how much of the genome it involves. It also dealt with phenotypes and how much of their variation is determined by underlying genetic diversity. And finally, and perhaps most importantly, the conference emphasized the importance of conservation and sustainable use of this genetic diversity as a nature-based solution to adapt under the fast pace of climate change. The conference demonstrated how improved knowledge on genomic diversity and evolutionary mechanisms can help to rescue forests, either naturally or by means of management.
  •  
45.
  •  
46.
  • Fogelqvist, Johan, et al. (författare)
  • Cryptic population genetic structure : the number of inferred clusters depends on sample size
  • 2010
  • Ingår i: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 10:2, s. 314-323
  • Tidskriftsartikel (refereegranskat)abstract
    • Clustering methods have been used extensively to unravel cryptic population genetic structure. We investigated the effect of the number of individuals sampled in each location on the resulting number of clusters. Our study was motivated by recent results in Arabidopsis thaliana: studies in which more than one individual was sampled per location apparently have led to a much higher number of clusters than studies where only one individual was sampled in each location, as is generally done in this species. We show, using computer simulations and microsatellite data in A. thaliana, that the number of sampled individuals indeed has a strong impact on the number of resulting clusters. This effect is smaller if the sampled populations have a hierarchical structure. In most cases, sampling 5-10 individuals per population should be enough. The results argue for abandoning the concept of 'accessions' in partially selfing organisms.
  •  
47.
  • Fogelqvist, Johan, et al. (författare)
  • Genetic and morphological evidence for introgression between three species of willows
  • 2015
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Hybridization and introgression are said to occur relatively frequently in plants, and in particular among different species of willows. However, data on the actual frequency of natural hybridization and introgression is rare. Here, we report the first fine-scale genetic analysis of a contact zone shared between the three basket willow species, Salix dasyclados, S. schwerinii and S. viminalis in the vicinity of the Lake Baikal in Southern Siberia. Individuals were sampled in fourteen populations and classified as pure species or hybrids based on a set of morphological characters. They were then genotyped at 384 nuclear SNP and four chloroplast SSR loci. The STRUCTURE and NewHybrids softwares were used to estimate the frequency and direction of hybridization using genotypic data at the nuclear SNP loci. Results: As many as 19 % of the genotyped individuals were classified as introgressed individuals and these were mainly encountered in the centre of the contact zone. All introgressed individuals were backcrosses to S. viminalis or S. schwerinii and no F1 or F2 hybrids were found. The rest of the genotyped individuals were classified as pure species and formed two clusters, one with S. schwerinii individuals and the other with S. viminalis and S. dasyclados individuals. The two clusters were significantly genetically differentiated, with F-ST = 0.333 (0.282-0.382, p < 0.001). In contrast, for the chloroplast haplotypes, no genetic differentiation was observed as they were completely shared between the species. Based on morphological classification only 5 % of the individuals were classified as introgressed individuals, which was much less than what was detected using genotypic data. Conclusions: We have discovered a new willow hybrid zone with relatively high frequency of introgressed individuals. The low frequency of F1 hybrids indicates that ongoing hybridization is limited, which could be because of the presence of reproductive barriers or simply because the conditions are not favorable for hybridization. We further conclude that in order to get a complete picture of the species composition of a hybrid zone it is necessary to use a combination of morphological characters and genetic data from both nuclear and chloroplast markers.
  •  
48.
  • Fogelqvist, Johan, 1973- (författare)
  • Genetic structure and dispersal in plant populations
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis focuses on the spatial structure and methods to identify spatial structure in plants. Methods that investigate genetic structure can mainly be divided into equilibrium methods that reveal summed dispersal over many generations, and cluster methods, that reveal more recent dispersal events. Depending on the spatial level, local or global, suitable methods are different. The thesis consists of four papers. The first explores the spatial genetic structure in two epiphytic bryophytes that have different dispersal strategies (Orthotrichum speciosum and O. obtusifolium) using three different approaches based on pairwise kinship coefficients assessed from AFLP data. The spatial kinship structure was detected with both autocorrelation analysis and generalized additive models, but linear regression failed to detect any structure in O. speciosum. In the second paper the spatial genetic structure in marginal populations of the forest tree Quercus robur is investigated at both local and regional scales. At the local scale, dispersal kernels as estimated using maximum likelihood parentage methods showed to be comparable to results acquired in central located populations. At the regional scale the degree of isolation at the margin of the distribution is shown. The third paper compares a number of sibship clustering methods. It was found that the performances of the sibship reconstruction algorithms are strongly dependent on fulfilling the assumptions of the model and that using an overly simple model produced very unreliable results. The amount of information included in the model affected the results; models including all the available information outperformed the models using only a subset of the information. In the last paper we show that the number of clusters as estimated by the software Structurama depends on sample size. At high number of subpopulations, the estimated number of clusters tends to be grossly underestimated when the number of sampled individuals per subpopulation is low.
  •  
49.
  •  
50.
  • Fu, Ruirui, et al. (författare)
  • Genome-wide analyses of introgression between two sympatric Asian oak species
  • 2022
  • Ingår i: Nature Ecology & Evolution. - : Springer Nature. - 2397-334X. ; 6:7, s. 924-
  • Tidskriftsartikel (refereegranskat)abstract
    • Introgression can be an important source of new alleles for adaption under rapidly changing environments, perhaps even more important than standing variation. Though introgression has been extensively studied in many plants and animals, key questions on the underlying mechanisms of introgression still remain unanswered. In particular, we are yet to determine the genomic distribution of introgressed regions along the genome; whether the extent and patterns of introgression are influenced by ecological factors; and when and how introgression contributes to adaptation. Here, we generated high-quality genomic resources for two sympatric widespread Asian oak species, Quercus acutissima and Q. variabilis, sampled in multiple forests to study introgression between them. We show that introgressed regions are broadly distributed across the genome. Introgression was affected by genetic divergence between pairs of populations and by the similarity of the environments in which they live-populations occupying similar ecological sites tended to share the same introgressed regions. Introgressed genomic footprints of adaptation were preferentially located in regions with suppressed recombination rate. Introgression probably confers adaptation in these oak populations by introducing allelic variation in cis-regulatory elements, in particular through transposable element insertions, thereby altering the regulation of genes related to stress. Our results provide new avenues of research for uncovering mechanisms of adaptation due to hybridization in sympatric species. Introgression is an important source of genetic variation. Analysing genomes of two sympatric widespread Asian oak species, the authors find introgression across the genome and signatures of adaptive introgression in regions with suppressed recombination rate.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 163
Typ av publikation
tidskriftsartikel (119)
annan publikation (21)
doktorsavhandling (14)
forskningsöversikt (5)
bokkapitel (3)
rapport (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (122)
övrigt vetenskapligt/konstnärligt (37)
populärvet., debatt m.m. (4)
Författare/redaktör
Lascoux, Martin (153)
Chen, Jun (32)
Glemin, Sylvain (23)
Lagercrantz, Ulf (22)
Källman, Thomas (20)
Milesi, Pascal (16)
visa fler...
Holm, Karl (10)
Gyllenstrand, Niclas (9)
Sjödin, Per (9)
Stocks, Michael (9)
Wright, Stephen I. (9)
Slotte, Tanja (8)
Savolainen, Outi (8)
Kryvokhyzha, Dmytro (8)
Vendramin, Giovanni ... (8)
Johannesson, Hanna (7)
Fogelqvist, Johan (7)
Karlsson, Bo (7)
Semerikov, Vladimir (7)
Tsuda, Yoshiaki (7)
Semerikov, Vladimir ... (7)
Li, Lili (7)
Liu, Jianquan (7)
Orsucci, Marion (7)
Westin, Johan (6)
Ravikanth, G. (5)
Vendramin, Giovanni ... (5)
Larsson, Hanna (5)
Spanu, Ilaria (5)
Fady, Bruno (5)
Bodare, Sofia, 1984- (5)
Morgante, Michele (5)
Ceplitis, Alf (4)
Zhao, Lei (4)
Garcia Gil, Rosario (4)
Vasudeva, R. (4)
Palmé, Anna (4)
Benavides, Raquel (4)
Valladares, Fernando (4)
Gonzalez-Martinez, S ... (4)
Gugerli, Felix (4)
Lalanne, Celine (4)
Piotti, Andrea (4)
Plomion, Christophe (4)
Rellstab, Christian (4)
Berlin, Mats (4)
Corcoran, Pádraic (4)
Uma Shaanker, R (4)
Cornille, Amandine (4)
Salcedo, Adriana (4)
visa färre...
Lärosäte
Uppsala universitet (162)
Sveriges Lantbruksuniversitet (21)
Stockholms universitet (4)
Lunds universitet (3)
Umeå universitet (1)
Örebro universitet (1)
visa fler...
Linköpings universitet (1)
RISE (1)
visa färre...
Språk
Engelska (158)
Odefinierat språk (3)
Svenska (1)
Japanska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (133)
Lantbruksvetenskap (17)
Medicin och hälsovetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy