SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lashley T.) "

Sökning: WFRF:(Lashley T.)

  • Resultat 1-22 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Guerreiro, R., et al. (författare)
  • Heritability and genetic variance of dementia with Lewy bodies
  • 2019
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 127, s. 492-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent large-scale genetic studies have allowed for the first glimpse of the effects of common genetic variability in dementia with Lewy bodies (DLB), identifying risk variants with appreciable effect sizes. However, it is currently well established that a substantial portion of the genetic heritable component of complex traits is not captured by genome-wide significant SNPs. To overcome this issue, we have estimated the proportion of phenotypic variance explained by genetic variability (SNP heritability) in DLB using a method that is unbiased by allele frequency or linkage disequilibrium properties of the underlying variants. This shows that the heritability of DLB is nearly twice as high as previous estimates based on common variants only (31% vs 59.9%). We also determine the amount of phenotypic variance in DLB that can be explained by recent polygenic risk scores from either Parkinson's disease (PD) or Alzheimer's disease (AD), and show that, despite being highly significant, they explain a low amount of variance. Additionally, to identify pleiotropic events that might improve our understanding of the disease, we performed genetic correlation analyses of DLB with over 200 diseases and biomedically relevant traits. Our data shows that DLB has a positive correlation with education phenotypes, which is opposite to what occurs in AD. Overall, our data suggests that novel genetic risk factors for DLB should be identified by larger GWAS and these are likely to be independent from known AD and PD risk variants. © 2019 Elsevier Inc.
  •  
2.
  • Guerreiro, R., et al. (författare)
  • Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study
  • 2018
  • Ingår i: Lancet Neurology. - 1474-4422. ; 17:1, s. 64-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Dementia with Lewy bodies is the second most common form of dementia in elderly people but has been overshadowed in the research field, partly because of similarities between dementia with Lewy bodies, Parkinson's disease, and Alzheimer's disease. So far, to our knowledge, no large-scale genetic study of dementia with Lewy bodies has been done. To better understand the genetic basis of dementia with Lewy bodies, we have done a genome-wide association study with the aim of identifying genetic risk factors for this disorder. Methods In this two-stage genome-wide association study, we collected samples from white participants of European ancestry who had been diagnosed with dementia with Lewy bodies according to established clinical or pathological criteria. In the discovery stage (with the case cohort recruited from 22 centres in ten countries and the controls derived from two publicly available database of Genotypes and Phenotypes studies [phs000404.v1.p1 and phs000982.v1.p1] in the USA), we performed genotyping and exploited the recently established Haplotype Reference Consortium panel as the basis for imputation. Pathological samples were ascertained following autopsy in each individual brain bank, whereas clinical samples were collected after participant examination. There was no specific timeframe for collection of samples. We did association analyses in all participants with dementia with Lewy bodies, and also only in participants with pathological diagnosis. In the replication stage, we performed genotyping of significant and suggestive results from the discovery stage. Lastly, we did a meta-analysis of both stages under a fixed-effects model and used logistic regression to test for association in each stage. Findings This study included 1743 patients with dementia with Lewy bodies (1324 with pathological diagnosis) and 4454 controls (1216 patients with dementia with Lewy bodies vs 3791 controls in the discovery stage; 527 vs 663 in the replication stage). Results confirm previously reported associations: APOE (rs429358; odds ratio [OR] 2.40, 95% CI 2.14-2.70; p=1.05 x 10-48), SNCA (rs7681440; OR 0.73, 0.66-0.81; p=6.39 x 10(-10)), and GBA (rs35749011; OR 2.55, 1.88-3.46; p=1.78 x 10(-9)). They also provide some evidence for a novel candidate locus, namely CNTN1 (rs7314908; OR 1.51, 1.27-1.79; p=2.32 x 10(-6)); further replication will be important. Additionally, we estimate the heritable component of dementia with Lewy bodies to be about 36%. Interpretation Despite the small sample size for a genome-wide association study, and acknowledging the potential biases from ascertaining samples from multiple locations, we present the most comprehensive and well powered genetic study in dementia with Lewy bodies so far. These data show that common genetic variability has a role in the disease.
  •  
3.
  • Orme, T., et al. (författare)
  • Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies
  • 2020
  • Ingår i: Acta neuropathologica communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Dementia with Lewy bodies (DLB) is a clinically heterogeneous disorder with a substantial burden on healthcare. Despite this, the genetic basis of the disorder is not well defined and its boundaries with other neurodegenerative diseases are unclear. Here, we performed whole exome sequencing of a cohort of 1118 Caucasian DLB patients, and focused on genes causative of monogenic neurodegenerative diseases. We analyzed variants in 60 genes implicated in DLB, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and atypical parkinsonian or dementia disorders, in order to determine their frequency in DLB. We focused on variants that have previously been reported as pathogenic, and also describe variants reported as pathogenic which remain of unknown clinical significance, as well as variants associated with strong risk. Rare missense variants of unknown significance were found in APP, CHCHD2, DCTN1, GRN, MAPT, NOTCH3, SQSTM1, TBK1 and TIA1. Additionally, we identified a pathogenic GRN p.Arg493* mutation, potentially adding to the diversity of phenotypes associated with this mutation. The rarity of previously reported pathogenic mutations in this cohort suggests that the genetic overlap of other neurodegenerative diseases with DLB is not substantial. Since it is now clear that genetics plays a role in DLB, these data suggest that other genetic loci play a role in this disease.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Murray, C. E., et al. (författare)
  • The presubiculum is preserved from neurodegenerative changes in Alzheimer's disease
  • 2018
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 6:62
  • Tidskriftsartikel (refereegranskat)abstract
    • In the majority of affected brain regions the pathological hallmarks of Alzheimer's disease (AD) are beta-amyloid (A beta) deposits in the form of diffuse and neuritic plaques, tau pathology in the form of neurofibrillary tangles, neuropil threads and plaque-associated abnormal neurites in combination with an inflammatory response. However, the anatomical area of the presubiculum, is characterised by the presence of a single large evenly distributed 'lake-like' A beta deposit with minimal tau deposition or accumulation of inflammatory markers. Post-mortem brain samples from sporadic AD (SAD) and familial AD (FAD) and two hereditary cerebral amyloid diseases, familial British dementia (FBD) and familial Danish dementia (FDD) were used to compare the morphology of the extracellular proteins deposited in the presubiculum compared to the entorhinal cortex. The level of tau pathology and the extent of microglial activation were quantitated in the two brain regions in SAD and FAD. Frozen tissue was used to investigate the A beta species and proteomic differences between the two regions. Consistent with our previous investigations of FBD and FDD cases we were able to establish that the 'lake-like' pre-amyloid deposits of the presubiculum were not a unique feature of AD but they also found two non-A beta amyloidosis. Comparing the presubiculum to the entorhinal cortex the number of neurofibrillary tangles and tau load were significantly reduced; there was a reduction in microglial activation; there were differences in the A beta profiles and the investigation of the whole proteome showed significant changes in different protein pathways. In summary, understanding why the presubiculum has a different morphological appearance, biochemical and proteomic makeup compared to surrounding brain regions severely affected by neurodegeneration could lead us to understanding protective mechanisms in neurodegenerative diseases.
  •  
9.
  • Portelius, Erik, 1977, et al. (författare)
  • Brain Amyloid-Beta Fragment Signatures in Pathological Ageing and Alzheimer's Disease by Hybrid Immunoprecipitation Mass Spectrometry
  • 2015
  • Ingår i: Neurodegenerative Diseases. - : S. Karger AG. - 1660-2854 .- 1660-2862. ; 15:1, s. 50-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Senile plaques in Alzheimer's disease (AD) are composed of amyloid-beta (A beta) especially N-truncated forms including A beta(4-42). These are thought to be neurotoxic. However, individuals may live for decades with biomarker evidence of cerebral beta-amyloidosis (positive amyloid PET imaging and/or low cerebrospinal fluid levels of the 42 amino acid form of A beta) without cognitive impairment. This condition may be termed pathological ageing (PA). Objective: To investigate whether there is a difference in the cerebral A beta fragment pattern in brain specimens from non-demented (PA) and demented (AD) individuals expressing the full neuropathological triad of AD (senile plaques, neurofibrillary tangles and neurodegeneration). Methods: We extracted A beta using formic acid and hybrid (6E10 and 4G8) immunoprecipitation from fresh-frozen temporal cortex tissue of 6 elderly individuals (mean age +/- SD:89 +/- 3.5 years) with PA and 10 patients with AD (mean age +/- SD: 72 +/- 8.5 years). The full spectrum of A beta peptides was determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Results: AD patients had generally more N-terminally truncated and pyroglutamate-modified A beta than PA patients, whereas PA patients had on average more A beta(1-40) than AD patients. Conclusion: Senile plaques in AD may have an AB fragment composition distinct from PA with more N-terminally and pyroglutamate-modified A beta peptides that may be linked to neurotoxicity. (C) 2015 S. Karger AG, Basel
  •  
10.
  • Verma, N., et al. (författare)
  • A beta efflux impairment and inflammation linked to cerebrovascular accumulation of amyloid-forming amylin secreted from pancreas
  • 2023
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Impairment of vascular pathways of cerebral beta-amyloid (A beta) elimination contributes to Alzheimer disease (AD). Vascular damage is commonly associated with diabetes. Here we show in human tissues and AD-model rats that bloodborne islet amyloid polypeptide (amylin) secreted from the pancreas perturbs cerebral A beta clearance. Blood amylin concentrations are higher in AD than in cognitively unaffected persons. Amyloid-forming amylin accumulates in circulating monocytes and co-deposits with A beta within the brain microvasculature, possibly involving inflammation. In rats, pancreatic expression of amyloid-forming human amylin indeed induces cerebrovascular inflammation and amylin-A beta co-deposits. LRP1-mediated A beta transport across the blood-brain barrier and A beta clearance through interstitial fluid drainage along vascular walls are impaired, as indicated by A beta deposition in perivascular spaces. At the molecular level, cerebrovascular amylin deposits alter immune and hypoxia-related brain gene expression. These converging data from humans and laboratory animals suggest that altering bloodborne amylin could potentially reduce cerebrovascular amylin deposits and A beta pathology.
  •  
11.
  • Arber, C., et al. (författare)
  • Familial Alzheimer’s disease patient-derived neurons reveal distinct mutation-specific effects on amyloid beta
  • 2020
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 25:11, s. 2919-2931
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial Alzheimer’s disease (fAD) mutations alter amyloid precursor protein (APP) cleavage by γ-secretase, increasing the proportion of longer amyloidogenic amyloid-β (Aβ) peptides. Using five control induced pluripotent stem cell (iPSC) lines and seven iPSC lines generated from fAD patients, we investigated the effects of mutations on the Aβ secretome in human neurons generated in 2D and 3D. We also analysed matched CSF, post-mortem brain tissue, and iPSCs from the same participant with the APP V717I mutation. All fAD mutation lines demonstrated an increased Aβ42:40 ratio relative to controls, yet displayed varied signatures for Aβ43, Aβ38, and short Aβ fragments. We propose four qualitatively distinct mechanisms behind raised Aβ42:40. (1) APP V717I mutations alter γ-secretase cleavage site preference. Whereas, distinct presenilin 1 (PSEN1) mutations lead to either (2) reduced γ-secretase activity, (3) altered protein stability or (4) reduced PSEN1 maturation, all culminating in reduced γ-secretase carboxypeptidase-like activity. These data support Aβ mechanistic tenets in a human physiological model and substantiate iPSC-neurons for modelling fAD. © 2019, Springer Nature Limited.
  •  
12.
  • Bhattacharjee, Payel, 1984, et al. (författare)
  • Mass Spectrometric Analysis of Lewy Body-Enriched alpha-Synuclein in Parkinson's Disease
  • 2019
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 18:5, s. 2109-2120
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) is characterized by intraneuronal inclusions of aggregated alpha-synuclein protein (so-called Lewy bodies) in distinct brain regions. Multiple posttranslational modifications may affect the structure and function of alpha-synuclein. Mass spectrometry-based analysis may be useful for the characterization and quantitation of alpha-synuclein forms, but has proven challenging, mainly due to the insolubility of Lewy bodies in aqueous buffer. In the present study, we developed a novel method by combining differential solubilization with immunoprecipitation and targeted proteomics using liquid chromatography and tandem mass spectrometry. Brain tissue homogenization and sample preparation were modified to facilitate analysis of soluble, detergent-soluble, and detergent-insoluble protein fractions (Lewy body-enriched). The method was used to compare alpha-synuclein forms from cingulate cortex (affected) and occipital cortex (unaffected) in two study sets of PD patients and controls. We identified similar to 20 modified alpha-synuclein variants, including species with N-terminal acetylation and C-terminal truncations at amino acids 103 and 119. The levels of alpha-synuclein forms Ac-alpha-syn(1-6), alpha-syn(13-21), alpha-syn(35-43), alpha-syn(46-58), alpha-syn(61-80), and alpha-syn(81-96) except alpha-syn(103-119) were significantly increased in PD cingulate region compared to controls in the Lewy body-enriched alpha-synuclein fraction. In the soluble fraction, only Ac-alpha-syn(1-6) was significantly increased in PD compared to controls. None of the detected alpha-synuclein variants were Lewy body-specific, but acetylated forms should be examined further as potential biomarkers for abnormal alpha-synuclein accumulation.
  •  
13.
  • Blennow, Kaj, et al. (författare)
  • Cerebrospinal fluid tau fragment correlates with tau PET : a candidate biomarker for tangle pathology
  • 2020
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 143:2, s. 650-660
  • Tidskriftsartikel (refereegranskat)abstract
    • To date, there is no validated fluid biomarker for tau pathology in Alzheimer's disease, with contradictory results from studies evaluating the correlation between phosphorylated tau in CSF with tau PET imaging. Tau protein is subjected to proteolytic processing into fragments before being secreted to the CSF. A recent study suggested that tau cleavage after amino acid 368 by asparagine endopeptidase (AEP) is upregulated in Alzheimer's disease. We used immunoprecipitation followed by mass spectrometric analyses to evaluate the presence of tau368 species in CSF. A novel Simoa® assay for quantification of tau368 in CSF was developed, while total tau (t-tau) was measured by ELISA and the presence of tau368 in tangles was evaluated using immunohistochemistry. The diagnostic utility of tau368 was first evaluated in a pilot study (Alzheimer's disease = 20, control = 20), then in a second cohort where the IWG-2 biomarker criteria were applied (Alzheimer's disease = 37, control = 45), and finally in a third cohort where the correlation with 18F-GTP1 tau PET was evaluated (Alzheimer's disease = 38, control = 11). The tau368/t-tau ratio was significantly decreased in Alzheimer's disease (P < 0.001) in all cohorts. Immunohistochemical staining demonstrated that tau fragments ending at 368 are present in tangles. There was a strong negative correlation between the CSF tau368/t-tau ratio and 18F-GTP1 retention. Our data suggest that tau368 is a tangle-enriched fragment and that the CSF ratio tau368/t-tau reflects tangle pathology. This novel tau biomarker could be used to improve diagnosis of Alzheimer's disease and to facilitate the development of drug candidates targeting tau pathology. Furthermore, future longitudinal studies will increase our understanding of tau pathophysiology in Alzheimer's disease and other tauopathies.
  •  
14.
  • Camporesi, Elena, et al. (författare)
  • Neuroligin-1 in brain and CSF of neurodegenerative disorders: investigation for synaptic biomarkers
  • 2021
  • Ingår i: Acta Neuropathologica Communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic pathology is a central event in Alzheimer's disease (AD) and other neurodegenerative conditions, and investigation of synaptic proteins can provide valuable tools to follow synaptic dysfunction and loss in these diseases. Neuroligin-1 (Nlgn1) is a postsynaptic cell adhesion protein, important for synapse stabilization and formation. Nlgn1 has been connected to cognitive disorders, and specifically to AD, as target of the synaptotoxic effect of amyloid-beta (A beta) oligomers and A beta fibrils. To address changes in Nlgn1 expression in human brain, brain regions in different neurological disorders were examined by Western blot and mass spectrometry. Brain specimens from AD (n = 23), progressive supranuclear palsy (PSP, n = 11), corticobasal degeneration (CBD, n = 10), and Pick's disease (PiD, n = 9) were included. Additionally, cerebrospinal fluid (CSF) samples of AD patients (n = 43) and non-demented controls (n = 42) were analysed. We found decreased levels of Nlgn1 in temporal and parietal cortex (similar to 50-60% reductions) in AD brains compared with controls. In frontal grey matter the reduction was not seen for AD patients; however, in the same region, marked reduction was found for PiD (similar to 77%), CBD (similar to 66%) and to a lesser extent for PSP (similar to 43%), which could clearly separate these tauopathies from controls. The Nlgn1 level was reduced in CSF from AD patients compared to controls, but with considerable overlap. The dramatic reduction of Nlgn1 seen in the brain extracts of tauopathies warrants further investigation regarding the potential use of Nlgn1 as a biomarker for these neurodegenerative diseases.
  •  
15.
  • Chebli, Jasmine, et al. (författare)
  • The localization of amyloid precursor protein to ependymal cilia in vertebrates and its role in ciliogenesis and brain development in zebrafish
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid precursor protein (APP) is expressed in many tissues in human, mice and in zebrafish. In zebrafish, there are two orthologues, Appa and Appb. Interestingly, some cellular processes associated with APP overlap with cilia-mediated functions. Whereas the localization of APP to primary cilia of in vitro-cultured cells has been reported, we addressed the presence of APP in motile and in non-motile sensory cilia and its potential implication for ciliogenesis using zebrafish, mouse, and human samples. We report that Appa and Appb are expressed by ciliated cells and become localized at the membrane of cilia in the olfactory epithelium, otic vesicle and in the brain ventricles of zebrafish embryos. App in ependymal cilia persisted in adult zebrafish and was also detected in mouse and human brain. Finally, we found morphologically abnormal ependymal cilia and smaller brain ventricles in appa(-/-)appb(-/-) mutant zebrafish. Our findings demonstrate an evolutionary conserved localisation of APP to cilia and suggest a role of App in ciliogenesis and cilia-related functions.
  •  
16.
  • Ehrenberg, Alexander J., et al. (författare)
  • Relevance of biomarkers across different neurodegenerative
  • 2020
  • Ingår i: Alzheimer's Research and Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • Background: The panel of fluid- and imaging-based biomarkers available for neurodegenerative disease research is growing and has the potential to close important gaps in research and the clinic. With this growth and increasing use, appropriate implementation and interpretation are paramount. Various biomarkers feature nuanced differences in strengths, limitations, and biases that must be considered when investigating disease etiology and clinical utility. For example, neuropathological investigations of Alzheimer's disease pathogenesis can fall in disagreement with conclusions reached by biomarker-based investigations. Considering the varied strengths, limitations, and biases of different research methodologies and approaches may help harmonize disciplines within the neurodegenerative disease field. Purpose of review: Along with separate review articles covering fluid and imaging biomarkers in this issue of Alzheimer's Research and Therapy, we present the result of a discussion from the 2019 Biomarkers in Neurodegenerative Diseases course at the University College London. Here, we discuss themes of biomarker use in neurodegenerative disease research, commenting on appropriate use, interpretation, and considerations for implementation across different neurodegenerative diseases. We also draw attention to areas where biomarker use can be combined with other disciplines to understand issues of pathophysiology and etiology underlying dementia. Lastly, we highlight novel modalities that have been proposed in the landscape of neurodegenerative disease research and care.
  •  
17.
  • Gkanatsiou, Eleni, et al. (författare)
  • Amyloid pathology and synaptic loss in pathological aging
  • 2021
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 159:2, s. 258-272
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory dysfunction and cognitive decline. Pathological aging (PA) describes patients who are amyloid-positive but cognitively unimpaired at time of death. Both AD and PA contain amyloid plaques dominated by amyloid beta (A beta) peptides. In this study, we investigated and compared synaptic protein levels, amyloid plaque load, and A beta peptide patterns between AD and PA. Two cohorts of post-mortem brain tissue were investigated. In the first, consisting of controls, PA, AD, and familial AD (FAD) individuals, synaptic proteins extracted with tris(hydroxymethyl)aminomethane-buffered saline (TBS) were analyzed. In the second, consisting of tissue from AD and PA patients from three different regions (occipital lobe, frontal lobe, and cerebellum), a two-step extraction was performed. Five synaptic proteins were extracted using TBS, and from the remaining portion A beta peptides were extracted using formic acid. Subsequently, immunoprecipitation with several antibodies targeting different proteins/peptides was performed for both fractions, which were subsequently analyzed by mass spectrometry. The levels of synaptic proteins were lower in AD (and FAD) compared with PA (and controls), confirming synaptic loss in AD patients. The amyloid plaque load was increased in AD compared with PA, and the relative amount of A beta 40 was higher in AD while for A beta 42 it was higher in PA. In AD loss of synaptic function was associated with increased plaque load and increased amounts of A beta 40 compared with PA cases, suggesting that synaptic function is preserved in PA cases even in the presence of A beta.
  •  
18.
  • Lashley, T., et al. (författare)
  • Molecular biomarkers of Alzheimer's disease: progress and prospects
  • 2018
  • Ingår i: Disease Models & Mechanisms. - : The Company of Biologists. - 1754-8403 .- 1754-8411. ; 11:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The neurodegenerative disorder Alzheimer's disease is characterised by the formation of beta-amyloid plaques and neurofibrillary tangles in the brain parenchyma, which cause synapse and neuronal loss. This leads to clinical symptoms, such as progressive memory deficits. Clinically, these pathological changes can be detected in the cerebrospinal fluid and with brain imaging, although reliable blood tests for plaque and tangle pathologies remain to be developed. Plaques and tangles often co-exist with other brain pathologies, including aggregates of transactive response DNA-binding protein 43 and Lewy bodies, but the extent to which these contribute to the severity of Alzheimer's disease is currently unknown. In this 'At a glance' article and poster, we summarise the molecular biornarkers that are being developed to detect Alzheimer's disease and its related pathologies. We also highlight the biornarkers that are currently in clinical use and include a critical appraisal of the challenges associated with applying these biornarkers for diagnostic and prognostic purposes of Alzheimer's disease and related neurodegenerative disorders, also in their prodromal clinical phases.
  •  
19.
  • Ly, Han, et al. (författare)
  • The association of circulating amylin with β-amyloid in familial Alzheimer's disease.
  • 2021
  • Ingår i: Alzheimer's & dementia. - : Wiley. - 2352-8737. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This study assessed the hypothesis that circulating human amylin (amyloid-forming) cross-seeds with amyloid beta (Aβ) in early Alzheimer's disease (AD).Evidence of amylin-AD pathology interaction was tested in brains of 31 familial AD mutation carriers and 20 cognitively unaffected individuals, in cerebrospinal fluid (CSF) (98 diseased and 117 control samples) and in genetic databases. For functional testing, we genetically manipulated amylin secretion in APP/PS1 and non-APP/PS1 rats.Amylin-Aβ cross-seeding was identified in AD brains. High CSF amylin levels were associated with decreased CSF Aβ42 concentrations. AD risk and amylin gene are not correlated. Suppressed amylin secretion protected APP/PS1 rats against AD-associated effects. In contrast, hypersecretion or intravenous injection of human amylin in APP/PS1 rats exacerbated AD-like pathology through disruption of CSF-brain Aβ exchange and amylin-Aβ cross-seeding.These findings strengthened the hypothesis of circulating amylin-AD interaction and suggest that modulation of blood amylin levels may alter Aβ-related pathology/symptoms.
  •  
20.
  • Michno, Wojciech, 1992, et al. (författare)
  • Chemical traits of cerebral amyloid angiopathy in familial British-, Danish-, and non-Alzheimer 's dementias
  • 2022
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 163:3, s. 233-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial British dementia (FBD) and familial Danish dementia (FDD) are autosomal dominant forms of dementia caused by mutations in the integral membrane protein 2B (ITM2B, also known as BRI2) gene. Secretase processing of mutant BRI2 leads to secretion and deposition of BRI2-derived amyloidogenic peptides, ABri and ADan that resemble APP/beta-amyloid (A beta) pathology, which is characteristic of Alzheimer's disease (AD). Amyloid pathology in FBD/FDD manifests itself predominantly in the microvasculature by ABri/ADan containing cerebral amyloid angiopathy (CAA). While ABri and ADan peptide sequences differ only in a few C-terminal amino acids, CAA in FDD is characterized by co-aggregation of ADan with A beta, while in contrast no A beta deposition is observed in FBD. The fact that FDD patients display an earlier and more severe disease onset than FBD suggests a potential role of ADan and A beta co-aggregation that promotes a more rapid disease progression in FDD compared to FBD. It is therefore critical to delineate the chemical signatures of amyloid aggregation in these two vascular dementias. This in turn will increase the knowledge on the pathophysiology of these diseases and the pathogenic role of heterogenous amyloid peptide interactions and deposition, respectively. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) in combination with hyperspectral, confocal microscopy based on luminescent conjugated oligothiophene probes (LCO) to delineate the structural traits and associated amyloid peptide patterns of single CAA in postmortem brain tissue of patients with FBD, FDD as well as sporadic CAA without AD (CAA+) that show pronounced CAA without parenchymal plaques. The results show that CAA in both FBD and FDD consist of N-terminally truncated- and pyroglutamate-modified amyloid peptide species (ADan and ABri), but that ADan peptides in FDD are also extensively C-terminally truncated as compared to ABri in FBD, which contributes to hydrophobicity of ADan species. Further, CAA in FDD showed co-deposition with A beta x-42 and A beta x-40 species. CAA+ vessels were structurally more mature than FDD/FBD CAA and contained significant amounts of pyroglutamated A beta. When compared with FDD, A beta in CAA+ showed more C-terminal and less N-terminally truncations. In FDD, ADan showed spatial co-localization with A beta 3pE-40 and A beta 3-40 but not with A beta x-42 species. This suggests an increased aggregation propensity of A beta in FDD that promotes co-aggregation of both A beta and ADan. Further, CAA maturity appears to be mainly governed by A beta content based on the significantly higher 500/580 patterns observed in CAA+ than in FDD and FBD, respectively. Together this is the first study of its kind on comprehensive delineation of Bri2 and APP-derived amyloid peptides in single vascular plaques in both FDD/FBD and sporadic CAA that provides new insight in non-AD-related vascular amyloid pathology.
  •  
21.
  •  
22.
  • Van Deerlin, Vivian M, et al. (författare)
  • Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:3, s. 234-239
  • Tidskriftsartikel (refereegranskat)abstract
    • Frontotemporal lobar degeneration (FTLD) is the second most common cause of presenile dementia. The predominant neuropathology is FTLD with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). FTLD-TDP is frequently familial, resulting from mutations in GRN (which encodes progranulin). We assembled an international collaboration to identify susceptibility loci for FTLD-TDP through a genome-wide association study of 515 individuals with FTLD-TDP. We found that FTLD-TDP associates with multiple SNPs mapping to a single linkage disequilibrium block on 7p21 that contains TMEM106B. Three SNPs retained genome-wide significance following Bonferroni correction (top SNP rs1990622, P = 1.08 x 10(-11); odds ratio, minor allele (C) 0.61, 95% CI 0.53-0.71). The association replicated in 89 FTLD-TDP cases (rs1990622; P = 2 x 10(-4)). TMEM106B variants may confer risk of FTLD-TDP by increasing TMEM106B expression. TMEM106B variants also contribute to genetic risk for FTLD-TDP in individuals with mutations in GRN. Our data implicate variants in TMEM106B as a strong risk factor for FTLD-TDP, suggesting an underlying pathogenic mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-22 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy