SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lauciello Simone) "

Sökning: WFRF:(Lauciello Simone)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Najafi, Leyla, et al. (författare)
  • Hybrid Organic/Inorganic Photocathodes Based on WS2 Flakes as Hole Transporting Layer Material
  • 2021
  • Ingår i: Small Structures. - : John Wiley & Sons. - 2688-4062. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The efficient production of molecular hydrogen (H2) is a fundamental step toward an environmentally friendly economy. Photocathodes using organic bulk heterojunction (BHJ) films as light harvesters represent an attracting technology for low-cost photoelectrochemical water splitting. These photocathodes need charge transporting layers (CTLs) to efficiently separate and transport either holes or electrons toward the back-current collector and electrolyte, respectively. Therefore, it is pivotal to control the energy band edge levels and the work function (WF) of the CTLs to match the ones of the BHJ film, current collector, and electrolyte. Herein, the use of 2D p-doped WS2 flakes as hole transporting material for H2-evolving photocathodes based on the regioregular poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (rr-P3HT:PCBM) BHJ film is proposed. The WS2 flakes are produced through scalable liquid-phase exfoliation of the bulk crystal, whereas p-type chemical doping allows the tuning of the WS2 WF. This approach boosts the performances of the photocathodes, reaching photocurrent densities up to 4.14 mA cm−2 at 0 V versus reversible hydrogen electrode (RHE), an onset potential of 0.66 V versus RHE, and a ratiometric power-saved metric of 1.28% (under 1 sun illumination). To the best of the authors' knowledge, these performances represent the current record for 2D materials-based CTLs.
  •  
2.
  • Najafi, Leyla, et al. (författare)
  • Topochemical Transformation of Two-Dimensional VSe2 into Metallic Nonlayered VO2 for Water Splitting Reactions in Acidic and Alkaline Media
  • 2022
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 16:1, s. 351-367
  • Tidskriftsartikel (refereegranskat)abstract
    • The engineering of the structural and morphological properties of nanomaterials is a fundamental aspect to attain desired performance in energy storage/conversion systems and multifunctional composites. We report the synthesis of room temperature-stable metallic rutile VO2 (VO2 (R)) nanosheets by topochemically transforming liquid-phase exfoliated VSe2 in a reductive Ar-H2 atmosphere. The asproduced VO2 (R) represents an example of two-dimensional (2D) nonlayered materials, whose bulk counterparts do not have a layered structure composed by layers held together by van der Waals force or electrostatic forces between charged layers and counterbalancing ions amid them. By pretreating the VSe2 nanosheets by O-2 plasma, the resulting 2D VO2 (R) nanosheets exhibit a porous morphology that increases the material specific surface area while introducing defective sites. The assynthesized porous (holey)-VO2 (R) nanosheets are investigated as metallic catalysts for the water splitting reactions in both acidic and alkaline media, reaching a maximum mass activity of 972.3 A g(-1) at -0.300 V vs RHE for the hydrogen evolution reaction (HER) in 0.5 M H2SO4 (faradaic efficiency = 100%, overpotential for the HER at 10 mA cm(-2) = 0.184 V) and a mass activity (calculated for a non 100% faradaic efficiency) of 745.9 A g(-1) at +1.580 V vs RHE for the oxygen evolution reaction (OER) in 1 M KOH (overpotential for the OER at 10 mA cm(-2) = 0.209 V). By demonstrating proof-of-concept electrolyzers, our results show the possibility to synthesize special material phases through topochemical conversion of 2D materials for advanced energy-related applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy