SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lavery P. S.) "

Sökning: WFRF:(Lavery P. S.)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Walden, L., et al. (författare)
  • Multi-scale mapping of Australia's terrestrial and blue carbon stocks and their continental and bioregional drivers
  • 2023
  • Ingår i: Communications Earth & Environment. - 2662-4435. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Multi-scale spatial machine learning of soil carbon stocks in Australia's terrestrial and coastal marine ecosystems reveals eight bio-regions and their underlying subregional drivers that can help inform strategies for conservation and climate change mitigation. The soil in terrestrial and coastal blue carbon ecosystems is an important carbon sink. National carbon inventories require accurate assessments of soil carbon in these ecosystems to aid conservation, preservation, and nature-based climate change mitigation strategies. Here we harmonise measurements from Australia's terrestrial and blue carbon ecosystems and apply multi-scale machine learning to derive spatially explicit estimates of soil carbon stocks and the environmental drivers of variation. We find that climate and vegetation are the primary drivers of variation at the continental scale, while ecosystem type, terrain, clay content, mineralogy and nutrients drive subregional variations. We estimate that in the top 0-30 cm soil layer, terrestrial ecosystems hold 27.6 Gt (19.6-39.0 Gt), and blue carbon ecosystems 0.35 Gt (0.20-0.62 Gt). Tall open eucalypt and mangrove forests have the largest soil carbon content by area, while eucalypt woodlands and hummock grasslands have the largest total carbon stock due to the vast areas they occupy. Our findings suggest these are essential ecosystems for conservation, preservation, emissions avoidance, and climate change mitigation because of the additional co-benefits they provide.
  •  
4.
  •  
5.
  • Dahl, Martin, 1984-, et al. (författare)
  • Impacts of land-use change and urban development on carbon sequestration in tropical seagrass meadow sediments
  • 2022
  • Ingår i: Marine Environmental Research. - : Elsevier BV. - 0141-1136 .- 1879-0291. ; 176
  • Tidskriftsartikel (refereegranskat)abstract
    • Seagrass meadows store significant carbon stocks at a global scale, but land-use change and other anthropogenic activities can alter the natural process of organic carbon (Corg) accumulation. Here, we assessed the carbon accumulation history of two seagrass meadows in Zanzibar (Tanzania) that have experienced different degrees of disturbance. The meadow at Stone Town has been highly exposed to urban development during the 20th century, while the Mbweni meadow is located in an area with relatively low impacts but historical clearing of adjacent mangroves. The results showed that the two sites had similar sedimentary Corg accumulation rates (22–25 g m−2 yr−1) since the 1940s, while during the last two decades (∼1998 until 2018) they exhibited 24–30% higher accumulation of Corg, which was linked to shifts in Corg sources. The increase in the δ13C isotopic signature of sedimentary Corg (towards a higher seagrass contribution) at the Stone Town site since 1998 points to improved seagrass meadow conditions and Corg accumulation capacity of the meadow after the relocation of a major sewage outlet in the mid–1990s. In contrast, the decrease in the δ13C signatures of sedimentary Corg in the Mbweni meadow since the early 2010s was likely linked to increased Corg run-off of mangrove/terrestrial material following mangrove deforestation. This study exemplifies two different pathways by which land-based human activities can alter the carbon storage capacity of seagrass meadows (i.e. sewage waste management and mangrove deforestation) and showcases opportunities for management of vegetated coastal Corg sinks.
  •  
6.
  • Dahl, Martin, et al. (författare)
  • Ranking the risk of CO2 emissions from seagrass soil carbon stocks under global change threats
  • 2023
  • Ingår i: Global Environmental Change. - : Elsevier. - 0959-3780 .- 1872-9495. ; 78
  • Tidskriftsartikel (refereegranskat)abstract
    • Seagrass meadows are natural carbon storage hotspots at risk from global change threats, and their loss can result in the remineralization of soil carbon stocks and CO2 emissions fueling climate change. Here we used expert elicitation and empirical evidence to assess the risk of CO2 emissions from seagrass soils caused by multiple human-induced, biological and climate change threats. Judgments from 41 experts were synthesized into a seagrass CO2 emission risk score based on vulnerability factors (i.e., spatial scale, frequency, magnitude, resistance and recovery) to seagrass soil organic carbon stocks. Experts perceived that climate change threats (e.g., gradual ocean warming and increased storminess) have the highest risk for CO2 emissions at global spatial scales, while direct threats (i.e., dredging and building of a marina or jetty) have the largest CO2 emission risks at local spatial scales. A review of existing peer-reviewed literature showed a scarcity of studies assessing CO2 emissions following seagrass disturbance, but the limited empirical evidence partly confirmed the opinion of experts. The literature review indicated that direct and long-term disturbances have the greatest negative impact on soil carbon stocks per unit area, highlighting that immediate management actions after disturbances to recover the seagrass canopy can significantly reduce soil CO2 emissions. We conclude that further empirical evidence assessing global change threats on the seagrass carbon sink capacity is required to aid broader uptake of seagrass into blue carbon policy frameworks. The preliminary findings from this study can be used to estimate the potential risk of CO2 emissions from seagrass habitats under threat and guide nature-based solutions for climate change mitigation.
  •  
7.
  • Maxwell, Tania L., et al. (författare)
  • Global dataset of soil organic carbon in tidal marshes
  • 2023
  • Ingår i: Scientific Data. - : Springer Nature. - 2052-4463. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha−1 in the top 30 cm and 231 ± 134 Mg SOC ha−1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies.
  •  
8.
  • Dahl, Martin, et al. (författare)
  • Impacts of land-use change and urban development on tropical seagrass carbon sinks
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Seagrass meadows store significant carbon stocks at a global scale, but land-use change and anthropogenic activities can alter the natural process of organic carbon (Corg) accumulation. Here, we assessed the carbon accumulation history of two seagrass meadows in Zanzibar (Tanzania) that experienced different degrees of disturbance. The meadow at Stone Town has been highly exposed to urban development during the 20th century, while the Mbweni meadow is located in an area with relatively low impacts but historical clearing of adjacent mangroves. The results showed that the two sites had similar sedimentary Corg accumulation rates (22–25 g m-2 yr-1) since the 1940s, while during the last two decades (~1998 until 2018) they exhibited 24–30% higher accumulation of Corg, which was linked to shifts in Corg sources. The increase in the δ13C isotopic signature of sedimentary Corg (towards a higher seagrass contribution) at the Stone Town site since 1998 points to improved seagrass meadow conditions and Corg accumulation capacity of the meadow after the relocation of a major sewage outlet in the mid–1990s. In contrast, the decrease in the δ13C signatures of sediment Corg in the Mbweni meadow since the early 2010s was likely linked to Corg transport from mangrove/terrestrial material run-off following the mangrove deforestation. This study exemplifies two different pathways by which land-based human activities can alter the carbon storage capacity of seagrass meadows (i.e. sewage waste management and mangrove deforestation) and showcases opportunities for management of vegetated coastal Corg sinks
  •  
9.
  •  
10.
  • Svensson, Carl Johan, 1976, et al. (författare)
  • An efficient method for collecting large samples of live copepods free from detritus
  • 2010
  • Ingår i: Marine and Freshwater Research. - 1323-1650. ; 61:5, s. 621-624
  • Tidskriftsartikel (refereegranskat)abstract
    • Meiofauna are often important in the transfer of organic material to higher trophic levels in aquatic environments. However, in food web analysis the group is frequently pooled or ignored owing to the difficulty in isolating individual components of the assemblage. In this study, we developed and tested a new method for extracting photopositive and detritus-free copepod samples from sediments, and compared this method to a previous technique (Couch 1989). In our initial trials, ,400 copepods (all orders included) were collected in 15 min compared with 60 copepods using Couch’s method. In subsequent trials that focussed on specific orders of copepods, our method was at least 10 times more efficient than Couch’s method at collecting cyclopoid and harpacticoid copepods from sediments. The new method requires very little supervision and there is no requirement for a particular intensity of light. This method can increase the collection of large numbers of photopositive copepods in aquatic systems, and thereby facilitate the inclusion of this important component into future food web studies, particularly those using biomarkers such as stable isotopes or fatty acids.
  •  
11.
  • Svensson, Carl Johan, 1976, et al. (författare)
  • Food web analysis in two permanently open temperate estuaries: Consequences of saltmarsh loss?
  • 2007
  • Ingår i: Marine Environmental Research. - : Elsevier BV. - 0141-1136. ; 64:3, s. 286-304
  • Tidskriftsartikel (refereegranskat)abstract
    • Saltmarsh vegetation, seston and microphytobenthos are all conspicuous components of most temperate estuaries and they potentially contribute to the estuarine food chain. Yet their relative contributions are unclear, as is the significance of saltmarsh losses through natural and human-induced impacts. This study aimed to quantitatively determine the contribution of various types of primary producers to detritus in the Walpole-Nornalup Estuary and Leschenault Inlet, two permanently open estuaries in SW Australia, and, estimate the flow of different types of detritus to higher trophic levels, using carbon (C-13) and nitrogen (N-15) stable isotopes as tracers. Results of the mixing model indicated that seston, microphytobenthos and to some extent seagrass and fringing saltmarsh were the main contributors to the detrital pool in both estuaries. However, the relative contribution of different primary producers varied both within and between estuaries. The contribution of saltmarsh was higher at sites close to rivers and dense fringing vegetation, while seston, microphytobenthos and seagrass dominated the detrital material at other sites. Benthic harpacticoid copepods were shown to feed on detritus though they appeared to actively select for different components of the detritus depending on site and estuary. Isotopic signatures of other consumers indicated that fish and invertebrates derived nutrients from MPB and detritus, either directly as food or indirectly through feeding on invertebrates. The overall contribution of saltmarsh to detritus was lower in Leschenault Inlet than in Walpole-Nornalup Estuary, possibly as a result of increased clearing of fringing vegetation around Leschenault Inlet. This pattern was however not reflected in harpacticoid food. Therefore, although losses of fringing saltmarsh around estuaries have the potential to significantly affect estuarine food webs, the significance of such losses will be site- and estuary-dependent. (c) 2007 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy