SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lawlor Amy) "

Sökning: WFRF:(Lawlor Amy)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Palmer, Nicholette D, et al. (författare)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • Ingår i: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:1, s. e29202-
  • Tidskriftsartikel (refereegranskat)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
2.
  • Chen, Jing, et al. (författare)
  • Dissecting maternal and fetal genetic effects underlying the associations between maternal phenotypes, birth outcomes, and adult phenotypes: A mendelian-randomization and haplotype-based genetic score analysis in 10,734 mother-infant pairs.
  • 2020
  • Ingår i: PLoS medicine. - : Public Library of Science (PLoS). - 1549-1676. ; 17:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Many maternal traits are associated with a neonate's gestational duration, birth weight, and birth length. These birth outcomes are subsequently associated with late-onset health conditions. The causal mechanisms and the relative contributions of maternal and fetal genetic effects behind these observed associations are unresolved.Based on 10,734 mother-infant duos of European ancestry from the UK, Northern Europe, Australia, and North America, we constructed haplotype genetic scores using single-nucleotide polymorphisms (SNPs) known to be associated with adult height, body mass index (BMI), blood pressure (BP), fasting plasma glucose (FPG), and type 2 diabetes (T2D). Using these scores as genetic instruments, we estimated the maternal and fetal genetic effects underlying the observed associations between maternal phenotypes and pregnancy outcomes. We also used infant-specific birth weight genetic scores as instrument and examined the effects of fetal growth on pregnancy outcomes, maternal BP, and glucose levels during pregnancy. The maternal nontransmitted haplotype score for height was significantly associated with gestational duration (p = 2.2 × 10-4). Both maternal and paternal transmitted height haplotype scores were highly significantly associated with birth weight and length (p < 1 × 10-17). The maternal transmitted BMI scores were associated with birth weight with a significant maternal effect (p = 1.6 × 10-4). Both maternal and paternal transmitted BP scores were negatively associated with birth weight with a significant fetal effect (p = 9.4 × 10-3), whereas BP alleles were significantly associated with gestational duration and preterm birth through maternal effects (p = 3.3 × 10-2 and p = 4.5 × 10-3, respectively). The nontransmitted haplotype score for FPG was strongly associated with birth weight (p = 4.7 × 10-6); however, the glucose-increasing alleles in the fetus were associated with reduced birth weight through a fetal effect (p = 2.2 × 10-3). The haplotype scores for T2D were associated with birth weight in a similar way but with a weaker maternal effect (p = 6.4 × 10-3) and a stronger fetal effect (p = 1.3 × 10-5). The paternal transmitted birth weight score was significantly associated with reduced gestational duration (p = 1.8 × 10-4) and increased maternal systolic BP during pregnancy (p = 2.2 × 10-2). The major limitations of the study include missing and heterogenous phenotype data in some data sets and different instrumental strength of genetic scores for different phenotypic traits.We found that both maternal height and fetal growth are important factors in shaping the duration of gestation: genetically elevated maternal height is associated with longer gestational duration, whereas alleles that increase fetal growth are associated with shorter gestational duration. Fetal growth is influenced by both maternal and fetal effects and can reciprocally influence maternal phenotypes: taller maternal stature, higher maternal BMI, and higher maternal blood glucose are associated with larger birth size through maternal effects; in the fetus, the height- and metabolic-risk-increasing alleles are associated with increased and decreased birth size, respectively; alleles raising birth weight in the fetus are associated with shorter gestational duration and higher maternal BP. These maternal and fetal genetic effects may explain the observed associations between the studied maternal phenotypes and birth outcomes, as well as the life-course associations between these birth outcomes and adult phenotypes.
  •  
3.
  • Chen, Wei-Min, et al. (författare)
  • Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels.
  • 2008
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; Jun 2, s. 2620-2628
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the genetic variants that regulate fasting glucose concentrations may further our understanding of the pathogenesis of diabetes. We therefore investigated the association of fasting glucose levels with SNPs in 2 genome-wide scans including a total of 5,088 nondiabetic individuals from Finland and Sardinia. We found a significant association between the SNP rs563694 and fasting glucose concentrations (P = 3.5 x 10(-7)). This association was further investigated in an additional 18,436 nondiabetic individuals of mixed European descent from 7 different studies. The combined P value for association in these follow-up samples was 6.9 x 10(-26), and combining results from all studies resulted in an overall P value for association of 6.4 x 10(-33). Across these studies, fasting glucose concentrations increased 0.01-0.16 mM with each copy of the major allele, accounting for approximately 1% of the total variation in fasting glucose. The rs563694 SNP is located between the genes glucose-6-phosphatase catalytic subunit 2 (G6PC2) and ATP-binding cassette, subfamily B (MDR/TAP), member 11 (ABCB11). Our results in combination with data reported in the literature suggest that G6PC2, a glucose-6-phosphatase almost exclusively expressed in pancreatic islet cells, may underlie variation in fasting glucose, though it is possible that ABCB11, which is expressed primarily in liver, may also contribute to such variation.
  •  
4.
  • Gaziano, Liam, et al. (författare)
  • Mild-to-moderate kidney dysfunction and cardiovascular disease : Observational and mendelian randomization analyses
  • 2022
  • Ingår i: Circulation. - : Wolters Kluwer. - 0009-7322 .- 1524-4539. ; 146:20, s. 1507-1517
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: End-stage renal disease is associated with a high risk of cardiovascular events. It is unknown, however, whether mild-to-moderate kidney dysfunction is causally related to coronary heart disease (CHD) and stroke.METHODS: Observational analyses were conducted using individual-level data from 4 population data sources (Emerging Risk Factors Collaboration, EPIC-CVD [European Prospective Investigation into Cancer and Nutrition-Cardiovascular Disease Study], Million Veteran Program, and UK Biobank), comprising 648 135 participants with no history of cardiovascular disease or diabetes at baseline, yielding 42 858 and 15 693 incident CHD and stroke events, respectively, during 6.8 million person-years of follow-up. Using a genetic risk score of 218 variants for estimated glomerular filtration rate (eGFR), we conducted Mendelian randomization analyses involving 413 718 participants (25 917 CHD and 8622 strokes) in EPIC-CVD, Million Veteran Program, and UK Biobank.RESULTS: There were U-shaped observational associations of creatinine-based eGFR with CHD and stroke, with higher risk in participants with eGFR values <60 or >105 mL·min-1·1.73 m-2, compared with those with eGFR between 60 and 105 mL·min-1·1.73 m-2. Mendelian randomization analyses for CHD showed an association among participants with eGFR <60 mL·min-1·1.73 m-2, with a 14% (95% CI, 3%-27%) higher CHD risk per 5 mL·min-1·1.73 m-2 lower genetically predicted eGFR, but not for those with eGFR >105 mL·min-1·1.73 m-2. Results were not materially different after adjustment for factors associated with the eGFR genetic risk score, such as lipoprotein(a), triglycerides, hemoglobin A1c, and blood pressure. Mendelian randomization results for stroke were nonsignificant but broadly similar to those for CHD.CONCLUSIONS: In people without manifest cardiovascular disease or diabetes, mild-to-moderate kidney dysfunction is causally related to risk of CHD, highlighting the potential value of preventive approaches that preserve and modulate kidney function.
  •  
5.
  • Heid, Iris M, et al. (författare)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 949-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
6.
  • Lindgren, Cecilia M, et al. (författare)
  • Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.
  • 2009
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 5:6, s. e1000508-
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity.
  •  
7.
  • Speliotes, Elizabeth K., et al. (författare)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
8.
  • Suzuki, Toshiyasu, et al. (författare)
  • b-Catenin Drives Butyrophilin-like Molecule Loss and gd T-cell Exclusion in Colon Cancer
  • 2023
  • Ingår i: CANCER IMMUNOLOGY RESEARCH. - : AMER ASSOC CANCER RESEARCH. - 2326-6066. ; 11:8, s. 1137-1155
  • Tidskriftsartikel (refereegranskat)abstract
    • Intraepithelial lymphocytes (IEL) expressing y8 T-cell receptors (y8TCR) play key roles in elimination of colon cancer. However, the precise mechanisms by which progressing cancer cells evade immu-nosurveillance by these innate T cells are unknown. Here, we investigated how loss of the Apc tumor suppressor in gut tissue could enable nascent cancer cells to escape immunosurveillance by cytotoxic y8IELs. In contrast with healthy intestinal or colonic tissue, we found that y8IELs were largely absent from the micro-environment of both mouse and human tumors, and that butyr-ophilin-like (BTNL) molecules, which can critically regulate y8IEL through direct y8TCR interactions, were also downregulated in tumors. We then demonstrated that 13-catenin activation through loss of Apc rapidly suppressed expression of the mRNA encoding the HNF4A and HNF4G transcription factors, preventing their binding to promoter regions of Btnl genes. Reexpression of BTNL1 and BTNL6 in cancer cells increased y8IEL survival and activation in coculture assays but failed to augment their cancer-killing ability in vitro or their recruitment to orthotopic tumors. However, inhibition of 13-catenin signaling via genetic deletion of Bcl9/Bcl9L in either Apc-deficient or mutant 13-catenin mouse models restored Hnf4a, Hnf4g, and Btnl gene expression and y8 T-cell infiltration into tumors. These observations highlight an immune-evasion mechanism specific to WNT-driven colon cancer cells that disrupts y8IEL immunosurveillance and furthers cancer progression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy