SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(LeCluyse Edward L.) "

Sökning: WFRF:(LeCluyse Edward L.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Godoy, Patricio, et al. (författare)
  • Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME
  • 2013
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 87:8, s. 1315-1530
  • Forskningsöversikt (refereegranskat)abstract
    • This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4 alpha, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4 alpha), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
  •  
2.
  • Pedersen, Jenny M., 1979-, et al. (författare)
  • Early Identification of Clinically Relevant Drug Interactions with the Human Bile Salt Export Pump (BSEP; ABCB11)
  • 2013
  • Ingår i: Toxicological Sciences. - : Oxford University Press (OUP). - 1096-6080 .- 1096-0929. ; 136:2, s. 328-343
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • A comprehensive analysis was performed to investigate how inhibition of the human bile salt export pump (BSEP/ABCB11) relates to clinically observed drug induced liver injury (DILI). Inhibition of taurocholate (TA) transport was investigated in BSEP membrane vesicles for a dataset of 250 compounds, and 86 BSEP inhibitors were identified. Structure-activity modeling identified BSEP inhibition to correlate strongly with compound lipophilicity, while positive molecular charge was associated with a lack of inhibition. All approved drugs in the dataset (n=182) were categorized according to DILI warnings in drug labels issued by the FDA and a strong correlation between BSEP inhibition and DILI was identified. As many as 38 of the 61 identified BSEP inhibitors were associated with severe DILI, including nine drugs not previously linked to BSEP inhibition. Further, among the tested compounds, every second drug associated with severe DILI was a BSEP inhibitor. Finally, sandwich cultured human hepatocytes (SCHH) were used to investigate the relationship between BSEP inhibition, TA transport and clinically observed DILI in detail. BSEP inhibitors associated with severe DILI greatly reduced the TA canalicular efflux while BSEP inhibitors with less severe or no DILI resulted in weak or no reduction of TA efflux in SCHH. This distinction illustrates the usefulness of SCHH in refined analysis of BSEP inhibition. In conclusion, BSEP inhibition in membrane vesicles was found to correlate to DILI severity, and altered disposition of TA in SCHH  was shown to separate BSEP inhibitors associated with severe DILI from those with no or mild DILI. 
  •  
3.
  • Ölander, Magnus, et al. (författare)
  • Hepatocyte size fractionation allows dissection of human liver zonation
  • 2021
  • Ingår i: Journal of Cellular Physiology. - : John Wiley & Sons. - 0021-9541 .- 1097-4652. ; 236:8, s. 5885-5894
  • Tidskriftsartikel (refereegranskat)abstract
    • Human hepatocytes show marked differences in cell size, gene expression, and function throughout the liver lobules, an arrangement termed liver zonation. However, it is not clear if these zonal size differences, and the associated phenotypic differences, are retained in isolated human hepatocytes, the “gold standard” for in vitro studies of human liver function. Here, we therefore explored size differences among isolated human hepatocytes and investigated whether separation by size can be used to study liver zonation in vitro. We used counterflow centrifugal elutriation to separate cells into different size fractions and analyzed them with label-free quantitative proteomics, which revealed an enrichment of 151 and 758 proteins (out of 5163) in small and large hepatocytes, respectively. Further analysis showed that protein abundances in different hepatocyte size fractions recapitulated the in vivo expression patterns of previously described zonal markers and biological processes. We also found that the expression of zone-specific cytochrome P450 enzymes correlated with their metabolic activity in the different fractions. In summary, our results show that differences in hepatocyte size matches zonal expression patterns, and that our size fractionation approach can be used to study zone-specific liver functions in vitro.
  •  
4.
  • Ölander, Magnus (författare)
  • Proteomic and Functional Analysis of In Vitro Systems for Studies of Drug Disposition in the Human Small Intestine and Liver
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • To reach the bloodstream, an orally administered drug must be absorbed through the small intestine and avoid extensive clearance in the liver. Estimating these parameters in vitro is therefore important in drug discovery and development. This can be achieved with cellular models that simulate human organ function, such as Caco-2 cells and primary hepatocytes. No model fits every scenario, however, and this thesis aimed at using proteomic and functional analysis to better understand and increase the applicability of in vitro models based on Caco-2 cells and human hepatocytes.First, the proteome of filter-grown Caco-2 cells was analyzed. This included near-complete coverage of enterocyte-related proteins, and over 300 ADME proteins. Further, by scaling uptake transport kinetics from Caco-2 cells to human jejunum, the importance of considering in vitro­-in vivo expression differences to correctly interpret in vitro transport studies was demonstrated.Focus was then turned to hepatocytes, where proteomics was used as a basis for the successful development of an apoptosis inhibition protocol for restoration of attachment properties and functionality in suboptimal batches of cryopreserved human hepatocytes. As a spin-off project, image-based quantification of cell debris was developed into a novel apoptosis detection method.Next, the in vivo heterogeneity of human hepatocytes was explored in an in vitro setting, where it was observed that human hepatocyte batches contain a wide range of cell sizes. By separating the cells into different size fractions, it was found that hepatocyte size corresponds to the microarchitectural zone of origin in the liver. Size separation can thus be used to study zonated liver functions in vitro.Finally, the proteomes of the major types of non-parenchymal liver cells were analyzed, i.e. liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells. The different cell types all had distinctly different proteomes, and the expression of certain important ADME proteins indicated that non-parenchymal cells participate in drug disposition.In conclusion, this thesis has improved the phenotypic understanding and extended the applicability of Caco-2 cells and primary human hepatocytes, two of the most important in vitro models for studies of small intestinal and hepatic drug disposition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy