SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leck Caroline) "

Sökning: WFRF:(Leck Caroline)

  • Resultat 1-50 av 110
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bigg, E Keith, et al. (författare)
  • Particulates of the surface microlayer of open water in the central Arctic Ocean in summer
  • 2004
  • Ingår i: Marine Chemistry. - : Elsevier BV. - 0304-4203. ; 91, s. 131-141
  • Tidskriftsartikel (refereegranskat)abstract
    • The particulate content of samples of the surface microlayer water collected from the open water between ice floes at latitudes 88° to 89°N in August 2001 was examined by transmission electron microscopy. Concentrations varied from 2×107 ml−1 to more than 1014 ml−1 although bacterial counts made in the same samples varied by only about 50%. Size distributions of the particles were also very variable with modal diameter sizes of 10 nm in some samples and 50 nm in others, the 50-nm particles appearing to be clusters of the 10 nm ones. A mucus-like material held the particles together in rafts, strings or in balls. The largest particles were compact electron-opaque aggregates of smaller particles. The particles appeared to have very similar characteristics to the “microcolloids” observed in bulk seawater in lower latitude oceans. X-ray analyses of the elements with atomic numbers >16 showed all signals to be weak, suggesting a mainly organic composition. The elements that were most commonly greater than background levels were all those associated with marine biological activity. Rapid aggregation of polymers to form colloids has been noted and is likely to be an important cause of the observed variability of particulate concentrations in the surface microlayer. The possibility of an equally rapid dispersal under the influence of ultraviolet light is raised.
  •  
2.
  • Bigg, E. Keith, et al. (författare)
  • The composition of fragments of bubbles bursting at the ocean surface
  • 2008
  • Ingår i: Journal of geophysical research: Atmospheres. ; 113:D11, s. D11209-
  • Tidskriftsartikel (refereegranskat)abstract
    • Air bubbles bursting on artificial seawater in laboratory experiments have been found to inject numerous particles <200 nm diameter into the atmosphere, some experiments showing copious production of particles as small as 10 nm. Some observations of the real marine aerosol support the presence of a large proportion of sea salt <200 nm diameter, while others suggest that it is absent, or nearly so. It is argued here that the observations showing its presence may be misinterpretations. If this is so, modification of currently accepted theories of particle injection into the atmosphere by bursting bubbles would be required. Highly surface active exopolymers produced by bacteria and algae, the microgels formed by them, and large concentrations of submicrometer particulates are known to be present in the ocean. Their possible influence on bubble formation, bubble bursting and particle injection into the atmosphere are discussed. Electron microscopy of individual particles at a number of sites supports the proposal that the exopolymers are involved in these processes. Ultraviolet light and acidification cause structural and chemical changes to exopolymers and their gels exposed to the atmosphere so that marine aerosol will have properties that change with atmospheric residence time.
  •  
3.
  • Birch, C. E., et al. (författare)
  • Modelling atmospheric structure, cloud and their response to CCN in the central Arctic : ASCOS case studies
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:7, s. 3419-3435
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations made during late summer in the central Arctic Ocean, as part of the Arctic Summer Cloud Ocean Study (ASCOS), are used to evaluate cloud and vertical temperature structure in the Met Office Unified Model (MetUM). The observation period can be split into 5 regimes; the first two regimes had a large number of frontal systems, which were associated with deep cloud. During the remainder of the campaign a layer of low-level cloud occurred, typical of central Arctic summer conditions, along with two periods of greatly reduced cloud cover. The short-range operational NWP forecasts could not accurately reproduce the observed variations in near-surface temperature. A major source of this error was found to be the temperature-dependant surface albedo parameterisation scheme. The model reproduced the low-level cloud layer, though it was too thin, too shallow, and in a boundary-layer that was too frequently well-mixed. The model was also unable to reproduce the observed periods of reduced cloud cover, which were associated with very low cloud condensation nuclei (CCN) concentrations (< 1 cm(-3)). As with most global NWP models, the MetUM does not have a prognostic aerosol/cloud scheme but uses a constant CCN concentration of 100 cm(-3) over all marine environments. It is therefore unable to represent the low CCN number concentrations and the rapid variations in concentration frequently observed in the central Arctic during late summer. Experiments with a single-column model configuration of the MetUM show that reducing model CCN number concentrations to observed values reduces the amount of cloud, increases the near-surface stability, and improves the representation of both the surface radiation fluxes and the surface temperature. The model is shown to be sensitive to CCN only when number concentrations are less than 10-20 cm(-3).
  •  
4.
  • Browse, J., et al. (författare)
  • The complex response of Arctic aerosol to sea-ice retreat
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:14, s. 7543-7557
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss of summertime Arctic sea ice will lead to a large increase in the emission of aerosols and precursor gases from the ocean surface. It has been suggested that these enhanced emissions will exert substantial aerosol radiative forcings, dominated by the indirect effect of aerosol on clouds. Here, we investigate the potential for these indirect forcings using a global aerosol microphysics model evaluated against aerosol observations from the Arctic Summer Cloud Ocean Study (ASCOS) campaign to examine the response of Arctic cloud condensation nuclei (CCN) to sea-ice retreat. In response to a complete loss of summer ice, we find that north of 70 degrees N emission fluxes of sea salt, marine primary organic aerosol (OA) and dimethyl sulfide increase by a factor of similar to 10, similar to 4 and similar to 15 respectively. However, the CCN response is weak, with negative changes over the central Arctic Ocean. The weak response is due to the efficient scavenging of aerosol by extensive drizzling stratocumulus clouds. In the scavenging-dominated Arctic environment, the production of condensable vapour from oxidation of dimethyl sulfide grows particles to sizes where they can be scavenged. This loss is not sufficiently compensated by new particle formation, due to the suppression of nucleation by the large condensation sink resulting from sea-salt and primary OA emissions. Thus, our results suggest that increased aerosol emissions will not cause a climate feedback through changes in cloud microphysical and radiative properties.
  •  
5.
  • Brännlund, Runar, et al. (författare)
  • Vetenskapliga rådets utblick
  • 2014
  • Ingår i: Miljö, ekonomi och politik 2014. - Stockholm : Konjunkturinstitutet. - 9789186315566 ; , s. 117-123
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
6.
  • Brännlund, Runar, et al. (författare)
  • Vetenskapliga rådets utblick
  • 2015
  • Ingår i: Miljö, ekonomi och politik 2015. - Stockholm : Konjunkturinstitutet. - 9789186315665 ; , s. 113-119
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
7.
  • Budhavant, K. B., et al. (författare)
  • Black carbon in cloud-water and rain water during monsoon season at a high altitude station in India
  • 2016
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 129, s. 256-264
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results of measurements of black carbon (BC) from ground-based wet-only rainwater (RW) and cloud-water (CW) sampling at a mountain field station, Sinhagad, situated in south western India during the period from June 2008 to October 2010. The amount of BC in the sample was determined by photometry at a wavelength of 528 nm after a procedure including the filtration through a 0.4 mu m polycarbonate membrane filter. Water soluble concentrations of major anions in RW and CW were also determined. The average concentration of BC in RW (16 mu mol dm(-3)) is higher by at least a factor 2 than that found in similar studies reported from other parts of the world. On the other hand, the average concentration of BC in CW (47 mu mol dm(-3)) is lower by about a factor of 2 than that found at other sites. The ratio between the average concentrations in CW and RW varies from 2 (K+) to 7 (SO42-). The ratio for BC was about 3. No significant difference was observed for pH. Analysis of air mass back trajectories and of correlations between the various components indicates that long range transport of pollutants and dust from East Africa and Southern part of the Arabian peninsula might contribute to the high concentrations of BC and some of the ionic constituents at Sinhagad during the monsoon season.
  •  
8.
  • Bulatovic, Ines, et al. (författare)
  • Aerosol Indirect Effects in Marine Stratocumulus : The Importance of Explicitly Predicting Cloud Droplet Activation
  • 2019
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 46:6, s. 3473-3481
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate models generally simulate a unidirectional, positive liquid water path (LWP) response to increasing aerosol number concentration. However, satellite observations and large-eddy simulations show that the LWP may either increase or decrease with increasing aerosol concentration, influencing the overall magnitude of the aerosol indirect effect (AIE). We use large-eddy simulation to investigate the LWP response of a marine stratocumulus cloud and its dependence on different parameterizations for obtaining cloud droplet number concentration (CDNC). The simulations confirm that the LWP response is not always positiveregardless of CDNC treatment. However, the AIE simulated with the model version with prescribed CDNC is almost 3 times larger compared to the version with prognostic CDNC. The reason is that the CDNC in the prognostic scheme varies in time due to supersaturation fluctuations, collection, and other microphysical processes. A substantial spread in simulated AIE may thus arise simply due to the CDNC treatment. Plain Language Summary Our poor understanding of aerosol-cloud-radiation interactions (aerosol indirect effects) results in a major uncertainty in estimates of anthropogenic aerosol forcing. In climate models, the cloud water response to an increased aerosol number concentration may be especially uncertain as models simplify, or do not account for, processes that affect the cloud droplet number concentration and the total amount of cloud water. In this study, we employ large-eddy simulation to explore how different model descriptions for obtaining the number concentration of cloud droplets influences the cloud water response of a marine stratocumulus cloud and thus the simulated aerosol indirect effect. Our simulations show a qualitatively similar cloud water response regardless of model description: the total amount of cloud water increases first and then decreases with increasing aerosol concentration. However, the simulated aerosol indirect effect is almost 3 times as large when the number concentration of cloud droplets is prescribed compared to when it is dependent on the calculated supersaturation and other microphysical processes such as collisions between cloud droplets. Our findings show that a relatively simple difference in the treatment of the number concentration of cloud droplets in climate models may result in a significant spread in the simulated aerosol indirect effect.
  •  
9.
  • Bulatovic, Ines (författare)
  • Investigating aerosol effects on stratocumulus clouds through large-eddy simulation
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Clouds have a large impact on Earth’s radiative budget by reflecting, absorbing and re-emitting radiation. They thus play a critical role in the climate system. Nevertheless, cloud radiative effects in a changing climate are highly uncertain. Atmospheric aerosol particles are another factor affecting Earth’s climate but the magnitude of their influence is also associated with high uncertainty. Therefore, an accurate representation of aerosol-cloud interactions in models is critical for having confidence in future climate projections. This thesis investigates aerosol impacts on cloud microphysical and radiative properties through numerical modelling, more specifically large-eddy simulation (LES). Moreover, the thesis investigates how the simulated cloud response to changes in the aerosol population depends on the model description of different processes. Mixed-phase stratocumulus (MPS) clouds are especially problematic to simulate for models on all scales. These clouds consist of a mixture of supercooled water and ice in the same volume and are therefore potentially thermodynamically unstable. MPS clouds over the central (north of 80° N) Arctic Ocean are particularly sensitive to aerosol changes due to the relatively clean atmospheric conditions in this region. At the same time, the clouds also have an important impact on the Arctic surface radiative budget. Therefore, this thesis mostly focuses on Arctic MPS clouds.Simulations of a typical subtropical marine stratocumulus cloud showed that the aerosol-cloud forcing depends on the model treatment for calculating the cloud droplet number concentration (CDNC). The simulated change in the top of the atmosphere shortwave radiation due to increased aerosol number concentrations was almost three times as large when the CDNC was prescribed compared to when the CDNC was prognostic. Simulations of a central Arctic summertime low-level MPS cloud confirmed that the chemical composition and the size of aerosol particles both can play an important role in determining the efficiency of an aerosol to act as cloud condensation nuclei - and thus influence cloud properties. However, the hygroscopicity of the aerosol particle was only important if the particles were small in size (i.e., if they correspond to the Aitken mode size) or if they were close to hydrophobic. Further, it was also found that Aitken mode particles can significantly change microphysical and radiative properties of central Arctic MPS if the concentration of larger particles (i.e., corresponding to the accumulation mode) is less than approximately 10-20 cm-3. One of the most recent research expeditions in the central Arctic (in the summer of 2018) was characterized by a high occurrence of multiple cloud layers. Namely, the boundary layer structure consisted of two MPS, one located close to the surface and one at the top of the boundary layer. Large-eddy simulations of an observed case with this particular cloud structure showed that the two-layer boundary-layer clouds are persistent unless the aerosol number concentrations are low (< 5 cm-3) or the wind speed is high (≥ 8.5 m s-1). In the model, low aerosol numbers led to a dissipation of the upper cloud layer while the lower cloud layer dissipated if the wind speed was strong. Changes in the optical thickness and cloud emissivity of each individual cloud layer of the two-layer cloud structure were found to substantially impact the surface radiative fluxes.
  •  
10.
  • Bulatovic, Ines, et al. (författare)
  • Large-eddy simulation of a two-layer boundary-layer cloud system from the Arctic Ocean 2018 expedition
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Climate change is particularly noticeable in the Arctic. The most common type of cloud at these latitudes is mixed-phase stratocumulus. These clouds occur frequently and persistently during all seasons and play a critical role in the Arctic energy budget. Previous observations in the central (north of 80° N) Arctic have shown a high occurrence of prolonged periods of a shallow, single-layer mixed-phase stratocumulus at the top of the boundary layer (altitudes ~300-400m). However, recent observations from the summer of 2018 (during The Microbiology-Ocean-Cloud-Coupling in the High Arctic (MOCCHA) Arctic Ocean 2018 (AO2018) expedition) instead showed a prevalence of a two-layer boundary-layer cloud system. Here we use large-eddy simulation to examine the maintenance of one of the cloud systems observed during MOCCHA AO2018 as well as the sensitivity of the cloud layers to different micro- and macro-scale parameters. We find that the model generally reproduces the observed thermodynamic structure well, with two near-neutrally stratified layers in the boundary layer caused by a low cloud (located within the first few hundred meters) capped by a lower temperature inversion, and an upper cloud layer (based around one kilometer or slightly higher) capped by the main temperature inversion of the boundary layer. The investigated cloud structure is persistent unless there are low aerosol number concentrations (< 5 cm-3), which cause the upper cloud layer to dissipate, or high large-scale wind speeds (³ 8.5 m s-1), which erode the lower inversion and the related cloud layer. These types of changes in cloud structure lead to a substantial reduction of the incoming net longwave radiation at the surface due to a lower emissivity or higher altitude of the remaining cloud layer. The findings highlight the importance of better understanding and representing aerosol sources and sinks over the central Arctic Ocean. Furthermore, they underline the significance of meteorological parameters, such as the large-scale wind speed, for maintaining the two-layer boundary-layer cloud structure encountered in the lower atmosphere of the central Arctic. 
  •  
11.
  • Bulatovic, Ines, 1991-, et al. (författare)
  • Large-eddy simulation of a two-layer boundary-layer cloud system from the Arctic Ocean 2018 expedition
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23:12, s. 7033-7055
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is particularly noticeable in the Arctic. The most common type of cloud at these latitudes is mixed-phase stratocumulus. These clouds occur frequently and persistently during all seasons and play a critical role in the Arctic energy budget. Previous observations in the central (north of 80∘ N) Arctic have shown a high occurrence of prolonged periods of a shallow, single-layer mixed-phase stratocumulus at the top of the boundary layer (BL; altitudes ∼ 300 to 400 m). However, recent observations from the summer of 2018 instead showed a prevalence of a two-layer boundary-layer cloud system. Here we use large-eddy simulation to examine the maintenance of one of the cloud systems observed in the summer of 2018 and the sensitivity of the cloud layers to different micro- and macro-scale parameters. We find that the model generally reproduces the observed thermodynamic structure well, with two near-neutrally stratified layers in the BL caused by a low cloud (located within the first few hundred meters) capped by a lower-altitude temperature inversion and an upper cloud layer (based around one kilometer or slightly higher) capped by the main temperature inversion of the BL. The simulated cloud structure is persistent unless there are low aerosol number concentrations (≤ 5 cm−3), which cause the upper cloud layer to dissipate, or high large-scale wind speeds (≥ 8.5 m s−1), which erode the lower inversion and the related cloud layer. The changes in cloud structure alter both the short- and longwave cloud radiative effect at the surface. This results in changes in the net radiative effect of the modeled cloud system, which can impact the surface melting or freezing. The findings highlight the importance of better understanding and representing aerosol sources and sinks over the central Arctic Ocean. Furthermore, they underline the significance of meteorological parameters, such as the large-scale wind speed, for maintaining the two-layer boundary-layer cloud structure encountered in the lower atmosphere of the central Arctic.
  •  
12.
  • Bulatovic, Ines, et al. (författare)
  • The importance of Aitken mode aerosol particles for cloud sustenance in the summertime high Arctic - a simulation study supported by observational data
  • 2021
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:5, s. 3871-3897
  • Tidskriftsartikel (refereegranskat)abstract
    • The potential importance of Aitken mode particles (diameters similar to 25-80 nm) for stratiform mixed-phase clouds in the summertime high Arctic (> 80 degrees N) has been investigated using two large-eddy simulation models. We find that, in both models, Aitken mode particles significantly affect the simulated microphysical and radiative properties of the cloud and can help sustain the cloud when accumulation mode concentrations are low (< 10-20 cm(-3)), even when the particles have low hygroscopicity (hygroscopicity parameter - kappa = 0.1). However, the influence of the Aitken mode decreases if the overall liquid water content of the cloud is low, either due to a higher ice fraction or due to low radiative cooling rates. An analysis of the simulated supersaturation (ss) statistics shows that the ss frequently reaches 0.5 % and sometimes even exceeds 1 %, which confirms that Aitken mode particles can be activated. The modelling results are in qualitative agreement with observations of the Hoppel minimum obtained from four different expeditions in the high Arctic. Our findings highlight the importance of better understanding Aitken mode particle formation, chemical properties and emissions, particularly in clean environments such as the high Arctic.
  •  
13.
  • Chang, R. Y. -W, et al. (författare)
  • Aerosol composition and sources in the central Arctic Ocean during ASCOS
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:20, s. 10619-10636
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of submicron aerosol chemical composition were made over the central Arctic Ocean from 5 August to 8 September 2008 as a part of the Arctic Summer Cloud Ocean Study (ASCOS) using an aerosol mass spectrometer (AMS). The median levels of sulphate and organics for the entire study were 0.051 and 0.055 mu gm(-3), respectively. Positive matrix factorisation was performed on the entire mass spectral time series and this enabled marine biogenic and continental sources of particles to be separated. These factors accounted for 33% and 36% of the sampled ambient aerosol mass, respectively, and they were both predominantly composed of sulphate, with 47% of the sulphate apportioned to marine biogenic sources and 48% to continental sources, by mass. Within the marine biogenic factor, the ratio of methane sulphonate to sulphate was 0.25+/-0.02, consistent with values reported in the literature. The organic component of the continental factor was more oxidised than that of the marine biogenic factor, suggesting that it had a longer photochemical lifetime than the organics in the marine biogenic factor. The remaining ambient aerosol mass was apportioned to an organic-rich factor that could have arisen from a combination of marine and continental sources. In particular, given that the factor does not correlate with common tracers of continental influence, we cannot rule out that the organic factor arises from a primary marine source.
  •  
14.
  • Christiansen, Sigurd, et al. (författare)
  • Influence of Arctic Microlayers and Algal Cultures on Sea Spray Hygroscopicity and the Possible Implications for Mixed-Phase Clouds
  • 2020
  • Ingår i: Journal of Geophysical Research: Atmospheres. - 2169-8996 .- 2169-897X. ; 125:19
  • Tidskriftsartikel (refereegranskat)abstract
    • As Arctic sea ice cover diminishes, sea spray aerosols (SSA) have a larger potential to be emitted into the Arctic atmosphere. Emitted SSA can contain organic material, but how it affects the ability of particles to act as cloud condensation nuclei (CCN) is still not well understood. Here we measure the CCN-derived hygroscopicity of three different types of aerosol particles: (1) Sea salt aerosols made from artificial seawater, (2) aerosol generated from artificial seawater spiked with diatom species cultured in the laboratory, and (3) aerosols made from samples of sea surface microlayer (SML) collected during field campaigns in the North Atlantic and Arctic Ocean. Samples are aerosolized using a sea spray simulation tank (plunging jet) or an atomizer. We show that SSA containing diatom and microlayer exhibit similar CCN activity to inorganic sea salt with a κ value of ∼1.0. Large-eddy simulation (LES) is then used to evaluate the general role of aerosol hygroscopicity in governing mixed-phase low-level cloud properties in the high Arctic. For accumulation mode aerosol, the simulated mixed-phase cloud properties do not depend strongly on κ, unless the values are lower than 0.4. For Aitken mode aerosol, the hygroscopicity is more important; the particles can sustain the cloud if the hygroscopicity is equal to or higher than 0.4, but not otherwise. The experimental and model results combined suggest that the internal mixing of biogenic organic components in SSA does not have a substantial impact on the cloud droplet activation process and the cloud lifetime in Arctic mixed-phase clouds.
  •  
15.
  • Coz Diego, Esther, et al. (författare)
  • Morphology and state of mixture of atmospheric soot aggregates during the winter season over Southern Asia-a quantitative approach
  • 2011
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 63:1, s. 107-116
  • Tidskriftsartikel (refereegranskat)abstract
    • The atmospheric brown cloud phenomena characterized by a high content of soot and a large impact on the solar radiative heating especially affects the tropical Indian Ocean during the winter season. The present study focuses on morphological characteristics and state of mixture of soot aggregates during the winter season over India. Given are quantitative measures of size, morphology and texture on aggregates collected in air at two different sites: Sinhagad near Pune in India and Hanimaadhoo in Maldives. For the latter site two different synoptic patterns prevailed: advection of air from the Arabian region and from the Indian subcontinent, respectively. Aggregates collected at Sinhagad, were associated with open branched structures, characteristic of fresh emission and diameters between 220 and 460 nm. The Hanimaadhoo aggregates were associated with aged closed structures, smaller sizes (130-360 nm) and frequently contained inorganic inclusions. Those arriving from the Indian subcontinent were characterized by the presence of an additional organic layer that covered the aggregate structure. These organic coatings might be a reasonable explanation of the low average wash-out ratios of soot two to seven times lower than that of nss-SO(4)2- that have been reported for air flow arriving at Hanimaadhoo from the Indian subcontinent in winter.
  •  
16.
  • Das, Ruby, et al. (författare)
  • Chemical composition of rainwater at Maldives Climate Observatory at Hanimaadhoo (MCOH)
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:8, s. 3743-3755
  • Tidskriftsartikel (refereegranskat)abstract
    • Water-soluble inorganic components in rain deposited at the Maldives Climate Observatory Hanimaadhoo (MCOH) were examined to determine seasonality and possible source regions. The study, which is part of the Atmospheric Brown Cloud (ABC) project, covers the period June 2005 to December 2007. Air mass trajectories were used to separate the data into situations with transport of air from India and adjacent parts of the Asian continent during the months December and January (Indian group) and those with southerly flow from the Indian Ocean during the summer monsoon season June to September (Marine group). A third trajectory group was identified with transport from the northern parts of the Arabian Sea and adjacent land areas during the months March, April and October (Arabian Sea group). The concentrations of nss-SO(4)(2-), NH(4)(+) and NO(3)(-) were more than a factor of 4 higher in the Indian group than in the Marine group. The average rainwater pH was significantly lower in the Indian group (4.7) than in the Marine group (6.0). This shows a pronounced influence of continental pollutants during December and January. The origin of the very high concentration of nss-Ca(2+) found in the Marine group - a factor of 7 higher than in the Indian group - is unclear. We discuss various possibilities including long-range transport from the African or Australian continents, local dust from nearby islands and calcareous plankton debris and exopolymer gels emitted from the ocean surface. The occurrence of NO(3)(-) and NH(4)(+) in the Marine group suggests emissions from the ocean surface. Part of the NO(3)(-) could also be associated with lightning over the ocean. Despite the fact that the concentrations of nss-SO(4)(2-), NO(3)(-), and NH(4)(+) were highest in the Indian group the wet deposition was at least as big in the Marine group reflecting the larger amount of rainfall during the monsoon season. The annual wet deposition of NO(3)(-), NH(4)(+) and nss-SO(4)(2-) at MCOH is about a factor of three lower than observed at rural sites in India.
  •  
17.
  • Duplessis, P., et al. (författare)
  • Highly Hygroscopic Aerosols Facilitate Summer and Early-Autumn Cloud Formation at Extremely Low Concentrations Over the Central Arctic Ocean
  • 2024
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 129:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic clouds are sensitive to atmospheric particles since these are sometimes in such low concentrations that clouds cannot always form under supersaturated water vapor conditions. This is especially true in the late summer, when aerosol concentrations are generally very low in the high Arctic. The environment changes rapidly around freeze-up as the open waters close and snow starts accumulating on ice. We investigated droplet formation during eight significant fog events in the central Arctic Ocean, north of 80 degrees, from August 12 to 19 September 2018 during the Arctic Ocean 2018 expedition onboard the icebreaker Oden. Calculated hygroscopicity parameters (kappa) for the entire study were very high (up to kappa = 0.85 +/- 0.13), notably after freeze-up, suggesting that atmospheric particles were very cloud condensation nuclei (CCN)-active. At least one of the events showed that surface clouds were able to form and persist for at least a couple hours at aerosol concentrations less than 10 cm-3, which was previously suggested to be the minimum for cloud formation. Among these events that were considered limited in CCN, effective radii were generally larger than in the high CCN cases. In some of the fog events, droplet residuals particles did not reactivate under supersaturations up to 0.95%, suggesting either in-droplet reactions decreased hygroscopicity, or an ambient supersaturation above 1%. These results provide insight into droplet formation during the clean late-summer and fall of the high Arctic with limited influence from continental sources. The Arctic atmosphere can be very clean in the summer, to the point that clouds cannot form because there are insufficient particles present for the water vapor to condense upon. This has important implications for the radiation budget, which is highly dependent on clouds. As part of the Arctic Ocean 2018 expedition in the central Arctic Ocean near the North Pole, we investigated the ability of particles to turn into droplets throughout the whole cruise (August 12 to 19 September 2018), and during eight significant fog events. Overall, we found that after the sea ice started to freeze, the particles were more capable of turning into cloud droplets. During one fog event, we observed fog droplets forming when the particle concentrations were lower than the limit that past studies had suggested that fog/cloud could be sustained. During several fog events, the dried fog droplets did not always re-form droplets when exposed to cloud-like conditions, which suggests that the original droplets must have formed under extreme conditions. Our results show that in the summer/fall in the high Arctic, liquid droplets sometimes form under unusual circumstances that are likely not always considered in models. Aerosol hygroscopicity was greater after surface water freeze-up than beforeHygroscopicity of Aitken mode particles was generally greater than accumulation mode particlesCloud droplet effective radii during aerosol-limited periods were larger generally than periods with higher aerosol concentrations
  •  
18.
  •  
19.
  • Engström, Erik J., 1976- (författare)
  • Characterization of soot in air and rain over southern Asia
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Filter-based optical measurements of light absorbing particulate matter at awavelength of about 550 nm, here referred to as soot, in air and rainwaterhave been performed during the period from 1st June 2005 to 31th May 2009at Godavari in Nepal, Sinhagad in India and Hanimaadhoo in The Maldives.A method for determination of water-insoluble light absorbing matter inrainwater has been developed. Analysis of environmental samples has beensuccessfully performed with the described method on samples collected atHanimaadhoo and Godavari. At Hanimaadhoo the average soot concentrationin rainwater was 48 mgl-1 and at Godavari 86 mgl-1.In order to reduce systematic errors at optical determination of soot due tothe light scattering of non-absorbing particles co-deposited on the filter, suchas inorganic salts and mineral dust, an additional sensor recording backscatteredlight was used. Two alternative protocols of corrections (optical andchemical) were applied to the samples. Simultaneous measurements of sootand inorganic ions in aerosol and precipitation at Hanimaadhoo during theperiod May 2005 to February 2007 made it possible to calculate the washoutratio (WR) of these components as a measure of how efficiently they are scavengedby precipitation. During the monsoon season the WR for soot was similarto that of sulphate and other fine mode aerosol components, indicating thatsoot containing particles in these situations were efficient as cloud condensationnuclei. During the polluted winter days, on the other hand, the WR forsoot was 3 times smaller than that of sulphate, showing that the soot containingparticles had retained a hydrophobic character even after a travel time ofseveral days.The Indian monsoon circulation with its two annual phases in combinationwith the location of the main combustion source areas dominated the observedpatterns of soot at the observatories in India and Maldives. Godavari in Nepalwas however mainly influenced by combustion sources all year around concealingpossible variability related to the monsoon circulation. At Hanimaadhoo,peak values in the soot concentration occurred during the winter season(December to April) when air was transported from the polluted Indian subcontinentout over the Indian Ocean. At least a factor of ten lower values wererecorded in air that had spent more than 10-days over the Indian Ocean duringthe monsoon season (July to September).  
  •  
20.
  • Engström, Erik J., 1976-, et al. (författare)
  • Reducing uncertainties associated with filter-based optical measurements of soot aerosol particles with chemical information.
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324.
  • Tidskriftsartikel (refereegranskat)abstract
    • Of the many identified and potential effects ofatmospheric aerosol particles on climate, those of soot particlesare the most uncertain, in that analytical techniques concerningsoot are far from satisfactory. One concern whenapplying filter-based optical measurements of soot is thatthey suffer from systematic errors due to the light scatteringof non-absorbing particles co-deposited on the filter, suchas inorganic salts and mineral dust. In addition to an opticalcorrection of the non-absorbing material this study providesa protocol for correction of light scattering based onthe chemical quantification of the material, which is a novelty.A newly designed Particle Soot Absorption Photometerwas constructed to measure light transmission on particleaccumulating filters, which includes an additional sensorrecording backscattered light. The choice of polycarbonatemembrane filters avoided high chemical blank values and reducederrors associated with length of the light path throughthe filter.Two protocols of corrections were applied to aerosol samplescollected at the Maldives Climate Observatory Hanimaadhooduring episodes with either continentally influencedair from the Indian/Arabian subcontinents (wintermonsoon) or pristine air from the Southern Indian Ocean(summer monsoon). The two ways of correction (optical andchemical) lowered the particle light absorption of soot by 63 to 61 %, respectively, for data from the Arabian Sea sourcedgroup, resulting in median soot absorption coefficients of 4.2 and 3.5 Mm-1. Corresponding values for the South IndianOcean data were 69 and 97 % (0.38 and 0.02 Mm-1). A comparison with other studies in the area indicated anoverestimation of their soot levels, by up to two orders ofmagnitude. This raises the necessity for chemical correctionprotocols on optical filter-based determinations of soot, before even the sign on the radiative forcing based on their effectscan be assessed.
  •  
21.
  • Engström, Erik, 1976-, et al. (författare)
  • Seasonal variability in light absorption particulate matter or soot in air at three stations in the South-Asian region situated in Nepal, India and Maldives
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Filter-based optical measurements of light absorbing particulate matter at awavelength of about 550 nm, referred to as soot, in air have been performed during theperiod from 1st June 2005 to 31th May 2009 at Godavari in Nepal, Sinhagad in India andHanimaadhoo in the Maldives. In order to reduce systematic errors due to the lightscattering of non-absorbing particles co-deposited on the filter, such as inorganic saltsand mineral dust, an additional sensor recording backscattered light was implemented.Two protocols of corrections (optical and chemical) were applied to the samplescollected at the observatories. The Indian monsoon circulation with its two annualphases in combination with the location of the combustion sources and their contributionrelative other non-anthropogenic sources dominated the observed patterns of soot at theobservatories in India and Maldives. The observatory in Nepal was however mainlyinfluenced by combustion sources all year around concealing possible variability relatedto the monsoon circulation. At the receptor observatory in the Maldives, peak values inthe soot absorption coefficient occurred during the winter season (December to April)when air was transported from the polluted Indian subcontinent out over the IndianOcean. A close to two orders of magnitude lower values were recorded in air that hadspent more than 10-days over the Indian Ocean during the monsoon season (July toSeptember), suggested to be dominated by particulate matter from remote marinebiogenic sources.
  •  
22.
  • Engström, J. E., et al. (författare)
  • Reducing uncertainties associated with filter-based optical measurements of light absorbing carbon particles with chemical information
  • 2011
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 4:8, s. 1553-1566
  • Tidskriftsartikel (refereegranskat)abstract
    • The presented filter-based optical method for determination of soot (light absorbing carbon or Black Carbon, BC) can be implemented in the field under primitive conditions and at low cost. This enables researchers with small economical means to perform monitoring at remote locations, especially in the Asia where it is much needed. One concern when applying filter-based optical measurements of BC is that they suffer from systematic errors due to the light scattering of non-absorbing particles co-deposited on the filter, such as inorganic salts and mineral dust. In addition to an optical correction of the non-absorbing material this study provides a protocol for correction of light scattering based on the chemical quantification of the material, which is a novelty. A newly designed photometer was implemented to measure light transmission on particle accumulating filters, which includes an additional sensor recording backscattered light. The choice of polycarbonate membrane filters avoided high chemical blank values and reduced errors associated with length of the light path through the filter. Two protocols for corrections were applied to aerosol samples collected at the Maldives Climate Observatory Hanimaadhoo during episodes with either continentally influenced air from the Indian/Arabian subcontinents (winter season) or pristine air from the Southern Indian Ocean (summer monsoon). The two ways of correction (optical and chemical) lowered the particle light absorption of BC by 63 to 61 %, respectively, for data from the Arabian Sea sourced group, resulting in median BC absorption coefficients of 4.2 and 3.5 Mm(-1). Corresponding values for the South Indian Ocean data were 69 and 97% (0.38 and 0.02 Mm(-1)). A comparison with other studies in the area indicated an overestimation of their BC levels, by up to two orders of magnitude. This raises the necessity for chemical correction protocols on optical filter-based determinations of BC, before even the sign on the radiative forcing based on their effects can be assessed.
  •  
23.
  • Engström, J. Erik, et al. (författare)
  • Seasonal variability in atmospheric black carbon at three stations in South-Asia
  • 2017
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • Filter-based optical measurements of black carbon in air, a constituent of soot, have been determined with a 528 nm light source during the period from 1 June 2005 to 31 May 2009 on samples taken at Godavari in Nepal, Sinhagad in India and Hanimaadhoo in the Maldives. In order to reduce systematic errors due to the light scattering of non-absorbing particles co-deposited on the filter, such as inorganic salts and mineral dust, an additional sensor recording backscattered light was implemented. Two protocols of corrections (optical and chemical) were applied to the samples collected at the observatories. The Indian monsoon circulation with its two annual phases in combination with the location of the combustion sources and their contribution relative to other non-anthropogenic sources dominated the observed patterns of black carbon at two of the observatories: in India and the Maldives. The observatory in Nepal was however mainly influenced by combustion sources all year around concealing possible variability related to the monsoon circulation. At the receptor observatory in the Maldives, peak values in the black carbon absorption coefficient occurred during the winter season (December to April) when air was transported from the polluted Indian subcontinent out over the Indian Ocean. A close to two orders of magnitude lower values were recorded in air that had spent more than 10-days over the Indian Ocean during the monsoon season (July to September), suggested to be dominated by particulate matter from remote marine biogenic sources and not by combustion sources.
  •  
24.
  • Franke, Vera, et al. (författare)
  • Chemical composition and source analysis of carbonaceous aerosol particles at a mountaintop site in central Sweden
  • 2017
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical composition of atmospheric particulate matter at Mt. angstrom reskutan, a mountaintop site in central Sweden, was analysed with a focus on its carbonaceous content. Filter samples taken during the Cloud and Aerosol Experiment at angstrom re (CAEsAR 2014) were analysed by means of a thermo-optical method and ion chromatography. Additionally, the particle light absorption and particle number size distribution measurements for the entire campaign were added to the analysis. Mean airborne concentrations of organic and elemental carbon during CAEsAR 2014 were OC= 0.85 +/- 0.8 mu gm(-3) and EC = 0.06 +/- 0.06 mu gm(-3), respectively. Elemental to organic carbon ratios varied between EC/OC = 0.02 and 0.19. During the study a large wildfire occurred in Vastmanland, Sweden, with the plume reaching our study site. This led to significant increases in OC and EC concentrations (OC = 3.04 +/- 0.03 mu gm(-3) and EC = 0.24 +/- 0.00 mu gm(-3)). The mean mass-specific absorption coefficient observed during the campaign was sigma(BC)(abs) = 9.1 +/- 7.3 m(2)g(-1) (at wavelength lambda= 637 nm). In comparison to similarly remote European sites, Mt. angstrom reskutan experienced significantly lower carbonaceous aerosol loadings with a clear dominance of organic carbon. A mass closure study revealed a missing chemical mass fraction that likely originated from mineral dust. Potential regional source contributions of the carbonaceous aerosol were investigated using modelled air mass back trajectories. This source apportionment pointed to a correlation between high EC concentrations and air originating from continental Europe. Particles rich in organic carbon most often arrived from highly vegetated continental areas. However, marine regions were also a source of these aerosol particles. The source contributions derived during this study were compared to emission inventories of an Earth system model. This comparison highlighted a lack of OC and EC point-sources in the model's emission inventory which could potentially lead to an underestimation of the carbonaceous aerosol reaching Mt. angstrom reskutan in the simulation of this Earth system model.
  •  
25.
  • Gao, Qiuju, et al. (författare)
  • Characterization of exopolysaccharides in marine colloids by capillary electrophoresis with indirect UV detection
  • 2010
  • Ingår i: Analytica Chimica Acta. - : Elsevier BV. - 0003-2670 .- 1873-4324. ; 662:2, s. 193-199
  • Tidskriftsartikel (refereegranskat)abstract
    • A method was established using capillary electrophoresis with indirect UV detection for analysis of monosaccharides liberated from exopolysaccharides by acidic hydrolysis. Tangential flow filtration was used to isolate high molecular weight polysaccharides from seawater. The capillary electrophoresis method included the use of a background electrolyte consisting of 2,6-dimethoxyphenol and cetyltrimethylammonium bromide. Several neutral sugars commonly existing in marine polysaccharides were separated under optimized conditions. The relative standard deviations were between 1.3% and 2.3% for relative migration time and 1.3-2.5% for peak height. Detection limits (at S/N 3) were in the range of 27.2-47.8 mu M. The proposed approach was applied to the analysis of hydrolyzed colloidal polysaccharides in seawater collected from the Baltic Sea. Nanomolar levels of liberated monosaccharides in seawater samples can be detected by preconcentration up to 30,000 times.
  •  
26.
  • Gao, Qiuju, 1966- (författare)
  • Marine biogenic polysaccharides as a potential source of aerosol in the high Arctic : Towards a link between marine biology and cloud formation
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Primary marine aerosol particles containing biogenic polymer microgels play a potential role for cloud formation in the pristine high Arctic summer. One of the major sources of the polymer gels in Arctic aerosol was suggested to be the surface water and more specifically, the surface microlayer (SML) of the open leads within the perennial sea ice as a result of bubble bursting at the air-sea interface.  Phytoplankton and/or ice algae are believed to be the main origins of the polymer gels. In this thesis, we examine the chemical composition of biogenic polymers, with focus on polysaccharides, in seawater and airborne aerosol particles collected during the Arctic Summer Cloud Ocean Study (ASCOS) in the summer of 2008. The main results and findings include: A novel method using liquid chromatography coupling with tandem mass spectrometry was developed and applied for identification and quantification of polysaccharides. The enrichment of polysaccharides in the SML was shown to be a common feature of the Arctic open leads. Rising bubbles and surface coagulation of polymers are the likely mechanism for the accumulation of polysaccharides at the SML. The size dependencies of airborne polysaccharides on the travel-time since the last contact with the open sea are indicative of a submicron microgel source within the pack ice.  The similarity of polysaccharides composition observed between the ambient aerosol particles and those generated by in situ bubbling experiments confines the microgel source to the open leads. The demonstrated occurrence of polysaccharides in surface sea waters and in air, with surface-active and hygroscopic properties, has shown their potential to serve as cloud condensation nuclei and subsequently promote cloud-drop activation in the pristine high Arctic. Presumably this possibility may renew interest in the complex but fascinating interactions between marine biology, aerosol, clouds and climate.
  •  
27.
  • Gao, Qiuju, et al. (författare)
  • Monosaccharide compositional analysis of marine polysaccharides by hydrophilic interaction liquid chromatography-tandem mass spectrometry
  • 2011
  • Ingår i: Analytical and Bioanalytical Chemistry. - : Springer Science and Business Media LLC. - 1618-2642 .- 1618-2650. ; 399:7, s. 2517-2529
  • Tidskriftsartikel (refereegranskat)abstract
    • A simple and sensitive method was developed using hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry for determination of monosaccharides liberated from marine polysaccharides by acidic hydrolysis. Optimal separation of diastereomeric monosaccharides including hexoses, pentoses, and deoxyhexoses was achieved using an aminopropyl bonded column with mobile phase containing ternary solvents (acetonitrile/methanol/water) in conjunction with MS/MS in SRM mode. Mechanisms for fragmentation of deprotonated monosaccharides with regard to cross-ring cleavage were proposed. Matrix effects from coeluting interferences were observed and isotopic-labeled internal standard was used to compensate for the signal suppression. The method demonstrated excellent instrumental limits of detection (LOD), ranging from 0.7 to 4.2 pg. Method LODs range from 0.9 to 5.1 nM. The proposed method was applied to the analysis of polysaccharides in seawater collected from the open leads of the central Arctic Ocean in the summer of 2008.
  •  
28.
  • Gao, Qiuju, et al. (författare)
  • On the chemical dynamics of extracellular polysaccharides in the high Arctic surface microlayer
  • 2012
  • Ingår i: Ocean Science. - : Copernicus GmbH. - 1812-0784 .- 1812-0792. ; 8:4, s. 401-418
  • Tidskriftsartikel (refereegranskat)abstract
    • The surface microlayer (SML) represents a unique system of which the physicochemical characteristics may differ from those of the underlying subsurface seawater (SSW). Within the Arctic pack ice area, the SML has been characterized as enriched in small colloids of biological origin, resulting from extracellular polymeric secretions (EPS). During the Arctic Summer Cloud-Ocean Study (ASCOS) in August 2008, particulate and dissolved organic matter (POM, DOM) samples were collected and chemically characterized from the SML and the corresponding SSW at an open lead centered at 87.5° N and 5°E.  Total organic carbon was persistently enriched in the SML with a mean enrichment factor (EF) of 1.45 ± 0.41, whereas sporadic depletions of dissolved carbohydrates and amino acids were observed. Monosaccharide compositional analysis reveals that EPS in the Arctic lead was formed mainly of distinctive heteropolysaccharides, enriched in xylose, fucose and glucose. The mean concentrations of total hydrolysable neutral sugars in SSW were 94.9 ± 37.5 nM in high molecular weight (HMW) DOM and 64.4 ± 14.5 nM in POM. The enrichment of polysaccharides in the SML appeared to be a common feature, with EFs ranging from 1.7 to 7.0 for particulate polysaccharides and 3.5 to 12.1 for polysaccharides in the HMW DOM fraction. A calculated monosaccharide yield suggests that polymers in the HMW DOM fraction were scavenged, without substantial degradation, into the SML.  Bubble scavenging experiments showed that newly aggregated particles could be formed abiotically by coagulation of low molecular weight nanometer-sized gels. Experimentally-generated aerosol particles were enriched in polysaccharides by factors of 22-70, relative to the source seawater. We propose that bubble scavenging of surface-active polysaccharides was one of the possible mechanisms for the enrichment of polysaccharides in the SML.
  •  
29.
  • Gustafsson, Örjan, et al. (författare)
  • Brown clouds over South Asia: Biomass or fossil fuel combustion?
  • 2009
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 323:23 January, s. 495-498
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbonaceous aerosols cause strong atmospheric heating and large surface cooling that is as important to South Asian climate forcing as greenhouse gases, yet the aerosol sources are poorly understood. Emission inventory models suggest that biofuel burning accounts for 50 to 90% of emissions, whereas the elemental composition of ambient aerosols points to fossil fuel combustion. We used radiocarbon measurements of winter monsoon aerosols from western India and the Indian Ocean to determine that biomass combustion produced two-thirds of the bulk carbonaceous aerosols, as well as one-half and two-thirds of two black carbon subfractions, respectively. These constraints show that both biomass combustion (such as residential cooking and agricultural burning) and fossil fuel combustion should be targeted to mitigate climate effects and improve air quality.
  •  
30.
  • Hamacher-Barth, Evelyne, et al. (författare)
  • A method for sizing submicrometer particles in air collected on Formvar films and imaged by scanning electron microscopy
  • 2013
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 6:12, s. 3459-3475
  • Tidskriftsartikel (refereegranskat)abstract
    • A method was developed to systematically investigate individual aerosol particles collected onto a polyvinyl formal (Formvar)-coated copper grid with scanning electron microscopy. At very mild conditions with a low accelerating voltage of 2 kV and Gentle Beam mode aerosol particles down to 20 nm in diameter can be observed. Subsequent processing of the images with digital image analysis provides size resolved and morphological information (elongation, circularity) on the aerosol particle population. Polystyrene nanospheres in the expected size range of the ambient aerosol particles (20–900 nm in diameter) were used to confirm the accuracy of sizing and determination of morphological parameters. The relative standard deviation of the diameters of the spheres was better than ±10% for sizes larger than 40 nm and ±18% for 21 nm particles compared to the manufacturer's certificate. Atmospheric particles were collected during an icebreaker expedition to the high Arctic (north of 80°) in the summer of 2008. Two samples collected during two different meteorological regimes were analyzed. Their size distributions were compared with simultaneously collected size distributions from a Twin Differential Mobility Particle Sizer, which confirmed that a representative fraction of the aerosol particles was imaged under the electron microscope. The size distributions obtained by scanning electron microscopy showed good agreement with the Twin Differential Mobility Sizer in the Aitken mode, whereas in the accumulation mode the size determination was critically dependent on the contrast of the aerosol with the Formvar-coated copper grid. The morphological properties (elongation, circularity) changed with the number of days the air masses spent over the pack-ice area north of 80° before the aerosol particles were collected at the position of the icebreaker and are thus an appropriate measure to characterize transformation processes of ambient aerosol particles.
  •  
31.
  • Hamacher-Barth, Evelyne, et al. (författare)
  • Size-resolved morphological properties of the high Arctic summer aerosol during ASCOS-2008
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:10, s. 6577-6593
  • Tidskriftsartikel (refereegranskat)abstract
    • The representation of aerosol properties and processes in climate models is fraught with large uncertainties. Especially at high northern latitudes a strong underprediction of aerosol concentrations and nucleation events is observed and can only be constrained by in situ observations based on the analysis of individual aerosol particles. To further reduce the uncertainties surrounding aerosol properties and their potential role as cloud condensation nuclei this study provides observational data resolved over size on morphological and chemical properties of aerosol particles collected in the summer high Arctic, north of 80A degrees aEuro-N. Aerosol particles were imaged with scanning and transmission electron microscopy and further evaluated with digital image analysis. In total, 3909 aerosol particles were imaged and categorized according to morphological similarities into three gross morphological groups: single particles, gel particles, and halo particles. Single particles were observed between 15 and 800aEuro-nm in diameter and represent the dominating type of particles (82aEuro-%). The majority of particles appeared to be marine gels with a broad Aitken mode peaking at 70aEuro-nm and accompanied by a minor fraction of ammonium (bi)sulfate with a maximum at 170aEuro-nm in number concentration. Gel particles (11aEuro-% of all particles) were observed between 45 and 800aEuro-nm with a maximum at 154aEuro-nm in diameter. Imaging with transmission electron microscopy allowed further morphological discrimination of gel particles in 'aggregate' particles, 'aggregate with film' particles, and 'mucus-like' particles. Halo particles were observed above 75aEuro-nm and appeared to be ammonium (bi)sulfate (59aEuro-% of halo particles), gel matter (19aEuro-%), or decomposed gel matter (22aEuro-%), which were internally mixed with sulfuric acid, methane sulfonic acid, or ammonium (bi)sulfate with a maximum at 161aEuro-nm in diameter. Elemental dispersive X-ray spectroscopy analysis of individual particles revealed a prevalence of the monovalent ions Na+/K+ for single particles and aggregate particles and of the divalent ions Ca2+/Mg2+ for aggregate with film particles and mucus-like particles. According to these results and other model studies, we propose a relationship between the availability of Na+/K+ and Ca2+/Mg2+ and the length of the biopolymer molecules participating in the formation of the three-dimensional gel networks.
  •  
32.
  • Hamacher-Barth, Evelyne, 1962-, et al. (författare)
  • The evolution of the high Arctic summer aerosol over the pack ice
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Ambient aerosol samples were collected over the pack ice north of 80° N during the summer of 2008 during the course of the ASCOS campaign. Aerosol particles were collected during nine sampling events and were subsequently sorted into five groups according to the number of days the air spent over the pack ice since last contact with the ice edge. As a tracer for marine sources, the molar ratio of methane sulfonic acid/non-sea-salt-sulfate was used. Scanning electron microscopy allowed size resolved identification of three types of aerosol particles, single particles, gel particles and halo particles within each sample group. Between the five groups we found significant differences in aerosol morphology, largely dependent on the time of advection over the pack ice (days over ice, DOI) and the synoptic weather encountered. The most obvious differences were observed for marine gel particles. The fraction of these particles in the lower accumulation mode, ≤ 100 nm, increased from 15% (DOI = 1) over 20% (DOI = 3.2) and 27% (DOI= 6.7) to 30% (DOI = 8.9). In parallel the gel particle morphology changed with increasing DOI value, from a widely outspread and weakly contrasting morphology (DOI = 1) over a more distinct and better contrasting appearance (DOI = 3.2) to sharply and well contoured particles (DOI = 6.7). The gel particles with the highest DOI value (DOI = 8.9), however, showed a branched and widely outspread morphology that indicated a relatively recent emission of these particles into the submicrometer size range, either from sources over the pack ice or through fragmentation of supermicrometer particles.
  •  
33.
  • Hamacher-Barth, Evelyne, 1962- (författare)
  • The high Arctic summer aerosol : Size, chemical composition, morphology and evolution over the pack-ice
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Aerosol particles, especially in the high Arctic are still not very well represented in climate models. Particle size and number concentrations are strongly under-predicted and temporal variations of aerosol composition and size are still not very well understood, mainly due to the sparsity of observations.The main objective of this thesis is the characterization of the high Arctic summer aerosol by means of electron microscopy in order to extend the existing data set from previous expeditions by size resolved data on aerosol number, morphology and chemical composition and to gain a better understanding of the evolution of the aerosol in the atmosphere.Ambient aerosol was collected over the pack ice during the Arctic Summer Cloud and Ocean (ASCOS) campaign to the high Arctic in summer 2008. Aerosol particles were evaluated with scanning electron microscopy and subsequent digital image processing to assess particle size and morphology. More than 3900 aerosol particles from 9 sampling events were imaged with scanning electron microscopy and merged into groups of similar morphology which contributed to different degrees to the total aerosol: single particles (82%), gel particles (11%) and halo particles (7%). Single particles were observed over the whole size range with a maximum at 64 nm in diameter, gel particles appeared > 45 nm with a maximum in number at 174 nm, halo particles appeared > 75 nm with a maximum in number at 161 nm. The majority of particles showed the morphology of marine gels, no sea salt or otherwise crystalline particles were observed. Transmission electron microscopy enabled more subtle insights into particle morphology and allowed further subdivision of gel particles into aggregates, aggregates with film and mucus-like particles. Energy dispersive X-ray spectroscopy of individual particles revealed a gradual transition in the content of Na+/K+ and Ca2+/Mg2+ between particle morphologies. Single particles and aggregate particles preferentially contained Na+/K+ whereas aggregate with film particles and mucus-like particles mainly contained Ca2+/Mg2+ suggesting a connection between particle morphology and ion content. Back-trajectory analysis was used to identify aerosol sources and to understand the evolution of the aerosol as a function of the synoptic weather situation. Particle numbers, size and morphology changed with the days the air mass spent over the pack-ice. A morphological descriptor applied to gel particles showed a clear trend suggesting that the contour of the particles becomes sharper and more distinct with increased time spent over the pack-ice. For a very long time over the pack-ice, however, we observed a morphology comparable to freshly emitted particles suggesting aerosol sources over the inner pack-ice.Size resolved aerosol chemical composition measurements were utilized to investigate the inorganic composition of laboratory generated nascent sea spray aerosol particles and ambient aerosol samples collected during ASCOS. A significant enrichment of Ca2+ was observed in submicrometer particles in either case with a tendency for increasing Ca2+ enrichment with decreasing particle size. This has strong implications for the alkalinity of sea spray aerosol particles with consequences for the sulfur chemistry in the marine boundary layer, the hygroscopicity and thus the potential of sea spray aerosol particles to act as cloud condensation nuclei.
  •  
34.
  • Hede, Thomas, 1975-, et al. (författare)
  • A theoretical study revealing the promotion of light-absorbing carbon particles solubilization by natural surfactants in nanosized water droplets
  • 2013
  • Ingår i: Atmospheric Science Letters. - : Wiley. - 1530-261X. ; 14:2, s. 86-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Many identified effects of atmospheric aerosol particles on climate come from pollutants. The effects of light-absorbing carbon particles (soot) are amongst the most uncertain and they are also considered to cause climate warming on the same order of magnitude as anthropogenic carbon dioxide. This study contributes to the understanding of the potential for transformation of the surface character of soot from hydrophobic to hydrophilic, which in clouds promotes a build-up of water-soluble material. We use molecular dynamics simulations to show how natural surfactants facilitate solubilization of fluoranthene, which we use as a model compound for soot in nanoaerosol water clusters.
  •  
35.
  • Hede, Thomas, 1975- (författare)
  • Beyond Köhler theory : Molecular dynamics simulations as a tool for atmospheric science
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, the results from molecular dynamics (MD) simulations of nanoaerosol clusters are discussed. The connecting link of these studies is the Köhler theory, which is the theory of condensational growth and activation of cloud droplets to form clouds. By investigating parameters such as the surface tension, state of mixture and morphology of nanoaerosol particles, conclusions can be drawn to improve the Köhler theory to include the effects of organic compounds previously unaccounted for.For the terrestrial environment, the simulations show that the natural surfactant cis-pinonic acid, an oxidation product evaporated from boreal trees, spontaneously accumulates at the surface of nanoaerosol clusters and thereby reduces the surface tension. The surface tension depression is related to the concentration of the surfactant and the size of the clusters. Surface tension is an important parameter of the Köhler theory. A decrease of the surface tension can lower the critical water vapour supersaturation needed for cloud droplet activation, giving rise to more, but smaller cloud droplets (Twomey effect) which in turn could change the optical properties of the cloud. It was also shown that the three organic surfactants, being model compounds for so called Humic-like substances (HULIS) have the ability to form aggregates inside the nanoaerosol clusters. These HULIS aggregates can also promote the solubilization of hydrophobic organic carbon in the form of fluoranthene, enabling soot taking part in cloud drop formation.Dissolved intermediately surface-active free amino acids were shown to be of some relevance for cloud formation over remote marine areas. The MD simulations showed differences between the interacting forces for spherical and planar interfaces of amino acids solutions.This thesis has emphasized the surface-active properties of organic compounds, including model HULIS and amino acids and their effect on surface tension and molecular orientation including aggregate formation in nanoaerosol clusters and their activation to form droplets. This thesis shows that the Köhler equation does not fully satisfactory describe the condensational growth of nano-sized droplets containing organic surfactants. Different approaches are suggested as revisions of the Köhler theory.
  •  
36.
  • Hede, Thomas, et al. (författare)
  • HULIS in Nanoaerosol Clusters; Investigations of Surface Tension and Aggregate Formation using Molecular Dynamics Simulations
  • 2011
  • Ingår i: Atmospheric Chemistry and Physics Discussions. - : Copernicus GmbH. - 1680-7367 .- 1680-7375.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Cloud condensation nuclei act as cores for water vapor condensation, and their composition and chemical properties may enhance or depress the ability for droplet growth. In this study we use molecular dynamics simulations to show that humic-like substances of larger systems (8.6 nm in diameter) mimic experimental data well referring to reduction of surface tension. The structural properties examined show the ability for the humic-like substances to aggregate inside the nanoaerosol clusters.
  •  
37.
  • Hede, Thomas, 1975-, et al. (författare)
  • Model HULIS compounds in nanoaerosol clusters : investigations of surface tension and aggregate formation using molecular dynamics simulations
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:13, s. 6549-6557
  • Tidskriftsartikel (refereegranskat)abstract
    • Cloud condensation nuclei act as cores for water vapour condensation, and their composition and chemical properties may enhance or depress the ability for droplet growth. In this study we use molecular dynamics simulations to show that model humic-like substances (HULIS) in systems containing 10 000 water molecules mimic experimental data well referring to reduction of surface tension. The model HULIS compounds investigated in this study are cis-pinonic acid (CPA), pinic acid (PAD) and pinonaldehyde (PAL). The structural properties examined show the ability for the model HULIS compounds to aggregate inside the nanoaerosol clusters.
  •  
38.
  • Hede, Thomas, et al. (författare)
  • Simulations of Light Absorption of Carbon Particles in Nanoaerosol Clusters
  • 2014
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 118:10, s. 1879-1886
  • Tidskriftsartikel (refereegranskat)abstract
    • Black carbon soot (BS) is considered to be the second most contributing organic matter next to carbon dioxide for the global warming effect. There is, however, so far no consensus on the quantitative warming effect due to the increased distribution of black carbon in the atmosphere. A recent report (Science 2012, 337, 1078) suggests that due to BS there is only a few percentage enhancement in absorption of BS-immersed aerosols. To get proper interpretation of the available experimental data, it becomes essential to obtain details of the microscopic origin of the absorption and scattering processes of the aerosol clusters due to the presence of soot. However, so far, due to the large spatial scale and the need for a quantum mechanical description of the particles involved in the absorption and scattering, this quest has posed an insurmountable challenge. In the present work we propose the use of a multiscale integrated approach based on molecular dynamics and a quantum mechanical molecular mechanical method to model the optical property of molecules immersed in nanosized aerosol particles. We choose fluoranthene (FA) with varying cis-pinonic acid (CPA) impurity concentration as an illustrative example of application. We observe that normally FA tends to be on the surface of the nanoaerosols but in the presence of CPA impurities its spatial location changes to a core aggregate to some extent. We find that the absorption maximum is only slightly red-shifted in the presence of increased CPA concentrations and that the oscillator strengths are not altered significantly. The comparable values for the oscillator strengths of all the low energy excitations suggest that the absorption enhancement of the aerosol due to BS will not be substantial, which is in line with the recent experimental report in Science.
  •  
39.
  •  
40.
  • Heintzenberg, Jost, et al. (författare)
  • New particle formation in the Svalbard region 2006-2015
  • 2017
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:10, s. 6153-6175
  • Tidskriftsartikel (refereegranskat)abstract
    • Events of new particle formation (NPF) were analyzed in a 10-year data set of hourly particle size distributions recorded on Mt. Zeppelin, Spitsbergen, Svalbard. Three different types of NPF events were identified through objective search algorithms. The first and simplest algorithm utilizes short-term increases in particle concentrations below 25 nm (PCT (percentiles) events). The second one builds on the growth of the sub-50 nm diameter median (DGR (diameter growth) events) and is most closely related to the classical banana type of event. The third and most complex, multiple-size approach to identifying NPF events builds on a hypothesis suggesting the concurrent production of polymer gel particles at several sizes below ca. 60 nm (MEV (multisize growth) events). As a first and general conclusion, we can state that NPF events are a summer phenomenon and not related to Arctic haze, which is a late winter to early spring feature. The occurrence of NPF events appears to be somewhat sensitive to the available data on precipitation. The seasonal distribution of solar flux suggests some photochemical control that may affect marine biological processes generating particle precursors and/or atmospheric photochemical processes that generate condensable vapors from precursor gases. Notably, the seasonal distribution of the biogenic methanesulfonate (MSA) follows that of the solar flux although it peaks before the maxima in NPF occurrence. A host of ancillary data and findings point to varying and rather complex marine biological source processes. The potential source regions for all types of new particle formation appear to be restricted to the marginal-ice and open-water areas between northeastern Greenland and eastern Svalbard.Depending on conditions, yet to be clarified new particle formation may become visible as short bursts of particles around 20 nm (PCT events), longer events involving condensation growth (DGR events), or extended events with elevated concentrations of particles at several sizes below 100 nm (MEV events). The seasonal distribution of NPF events peaks later than that of MSA and DGR, and in particular than that of MEV events, which reach into late summer and early fall with open, warm, and biologically active waters around Svalbard. Consequently, a simple model to describe the seasonal distribution of the total number of NPF events can be based on solar flux and sea surface temperature, representing environmental conditions for marine biological activity and condensation sink, controlling the balance between new particle nucleation and their condensational growth. Based on the sparse knowledge about the seasonal cycle of gel-forming marine microorganisms and their controlling factors, we hypothesize that the seasonal distribution of DGR and, more so, MEV events reflect the seasonal cycle of the gel-forming phytoplankton.
  •  
41.
  • Heintzenberg, J., et al. (författare)
  • Potential source regions and processes of aerosol in the summer Arctic
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:11, s. 6487-6502
  • Tidskriftsartikel (refereegranskat)abstract
    • Sub-micrometer particle size distributions measured during four summer cruises of the Swedish icebreaker Oden 1991, 1996, 2001, and 2008 were combined with dimethyl sulfide gas data, back trajectories, and daily maps of pack ice cover in order to investigate source areas and aerosol formation processes of the boundary layer aerosol in the central Arctic. With a clustering algorithm, potential aerosol source areas were explored. Clustering of particle size distributions together with back trajectories delineated five potential source regions and three different aerosol types that covered most of the Arctic Basin: marine, newly formed and aged particles over the pack ice. Most of the pack ice area with <15% of open water under the trajectories exhibited the aged aerosol type with only one major mode around 40 nm. For newly formed particles to occur, two conditions had to be fulfilled over the pack ice: the air had spent 10 days while traveling over ever more contiguous ice and had traveled over less than 30% open water during the last 5 days. Additionally, the air had experienced more open water (at least twice as much as in the cases of aged aerosol) during the last 4 days before arrival in heavy ice conditions at Oden. Thus we hypothesize that these two conditions were essential factors for the formation of ultrafine particles over the central Arctic pack ice. In a comparison the Oden data with summer size distribution data from Alert, Nunavut, and Mt. Zeppelin, Spitsbergen, we confirmed the Oden findings with respect to particle sources over the central Arctic. Future more frequent broken-ice or open water patches in summer will spur biological activity in surface water promoting the formation of biological particles. Thereby low clouds and fogs and subsequently the surface energy balance and ice melt may be affected.
  •  
42.
  • Heintzenberg, Jost, et al. (författare)
  • Scavenging of black carbon in Chilean coastal fogs
  • 2016
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 541, s. 341-347
  • Tidskriftsartikel (refereegranskat)abstract
    • In November/December 2013 a pilot experiment on aerosol/fog interaction was conducted on a coastal hill in the suburbs of Valparaiso, Chile. Passages of garua fog were monitored with continuous recordings of a soot photometer and an optical aerosol spectrometer. An optical fog sensor and an automatic weather station provided meteorological data with which the aerosol could be classified. High-resolution back trajectories added meteorological information. From filter samples, optical and chemical aerosol information was derived. Scavenging coefficients of black carbon (BC) and measured particulate mass below 1 mu m diameter (PM1) were estimated with three approaches. Averaging over all fog periods of the campaign yielded a scavenging coefficient of only 6% for BC and 40% for PM1. Dividing the data into four 90 degrees-wind sectors gave scavenging factors for BC ranging from 13% over the Valparaiso, Vina del Mar conurbation to 50% in the marine sector (180 degrees-270 degrees). The third, and independent approach was achieved with two pairs of chemical aerosol samples taken inside and outside fogs, which yielded a scavenging coefficient of 25% for BC and 70% for nonseasalt sulfate. Whereas fogs occurred rather infrequently in the beginning of the campaign highly regular daily fog cycles appeared towards the end of the experiment, which allowed the calculation of typical diurnal cycles of the aerosol in relation to a fog passage.
  •  
43.
  • Heintzenberg, J., et al. (författare)
  • The summer aerosol in the Central Arctic 1991 2008 : did it change or not?
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:9, s. 3969-3983
  • Tidskriftsartikel (refereegranskat)abstract
    • In the course of global warming dramatic changes are taking place in the Arctic and boreal environments. However, physical aerosol data in from the central summer Arctic taken over the course of 18 yr from 1991 to 2008 do not show systematic year-to-year changes, albeit substantial interannual variations. Besides the limited extent of the data several causes may be responsible for these findings. The processes controlling concentrations and particle size distribution of the aerosol over the central Arctic perennial pack ice area, north of 80A degrees, may not have changed substantially during this time. Environmental changes are still mainly effective in the marginal ice zone, the ice-free waters and continental rims and have not propagated significantly into the central Arctic yet where they could affect the local aerosol and its sources. The analysis of meteorological conditions of the four expedition summers reveal substantial variations which we see as main causes of the measured variations in aerosol parameters. With combined lognormal fits of the hourly number size distributions of the four expeditions representative mode parameters for the summer aerosol in the central Arctic have been calculated. The combined aerosol statistics discussed in the present paper provide comprehensive physical data on the summer aerosol in the central Arctic. These data are the only surface aerosol information from this region.
  •  
44.
  • Held, A., et al. (författare)
  • Near-surface profiles of aerosol number concentration and temperature over the Arctic Ocean
  • 2011
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 4:8, s. 1603-1616
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature and particle number concentration profiles were measured at small height intervals above open and frozen leads and snow surfaces in the central Arctic. The device used was a gradient pole designed to investigate potential particle sources over the central Arctic Ocean. The collected data were fitted according to basic logarithmic flux-profile relationships to calculate the sensible heat flux and particle deposition velocity. Independent measurements by the eddy covariance technique were conducted at the same location. General agreement was observed between the two methods when logarithmic profiles could be fitted to the gradient pole data. In general, snow surfaces behaved as weak particle sinks with a maximum deposition velocity upsilon(d) = 1.3 mm s(-1) measured with the gradient pole. The lead surface behaved as a weak particle source before freeze-up with an upward flux F(c) = 5.7 x 10(4) particles m(-2) s(-1), and as a relatively strong heat source after freeze-up, with an upward maximum sensible heat flux H = 13.1 W m(-2). Over the frozen lead, however, we were unable to resolve any significant aerosol profiles.
  •  
45.
  • Held, A., et al. (författare)
  • On the potential contribution of open lead particle emissions to the = ntral Arctic aerosol concentration
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:7, s. 3093-3105
  • Tidskriftsartikel (refereegranskat)abstract
    • We present direct eddy covariance measurements of aerosol number fluxes, dominated by sub-50 nm particles, at the edge of an ice floe drifting in the central Arctic Ocean. The measurements were made during the ice-breaker borne ASCOS (Arctic Summer Cloud Ocean Study) expedition in August 2008 between 2 degrees-10 degrees W longitude and 87 degrees-87.5 degrees N latitude. The median aerosol transfer velocities over different surface types (open water leads, ice ridges, snow and ice surfaces) ranged from 0.27 to 0.68 mm s(-1) during deposition-dominated episodes. Emission periods were observed more frequently over the open lead, while the snow behaved primarily as a deposition surface. Directly measured aerosol fluxes were compared with particle deposition parameterizations in order to estimate the emission flux from the observed net aerosol flux. Finally, the contribution of the open lead particle source to atmospheric variations in particle number concentration was evaluated and compared with the observed temporal evolution of particle number. The direct emission of aerosol particles from the open lead can explain only 5-10% of the observed particle number variation in the mixing layer close to the surface.
  •  
46.
  • Hellen, Heidi, et al. (författare)
  • Summer concentrations of NMHCs in ambient air of the Arctic and Antarctic
  • 2012
  • Ingår i: Boreal environment research. - 1239-6095 .- 1797-2469. ; 17:5, s. 385-397
  • Tidskriftsartikel (refereegranskat)abstract
    • Summer concentrations of C-2-C-6 non-methane hydrocarbons (NMHCs) were measured in Antarctica and in the Arctic in 2008. The results show that NMHC concentrations are on average five times higher in the Arctic than in Antarctica. In Antarctica, there were few concentration peaks, but during most of the remaining time concentrations were below or close to the detection limits. Over the Arctic pack ice area north of 80 degrees, concentrations of most of the measured NMHCs were always above the detection limits. No differences based on air-mass origin were detected in Antarctica, but samples collected over the central Arctic Ocean showed higher concentrations in air masses being advected from the Kara Sea and the western-central Arctic Ocean. The relatively higher NMHC-to-ethyne molar ratios calculated for samples collected over the central Arctic Ocean suggest additional alkane sources in the region.
  •  
47.
  •  
48.
  • Höpner, Friederike, et al. (författare)
  • Investigation of Two Optical Methods for Aerosol‐Type Classification Extended to a Northern Indian Ocean Site
  • 2019
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 124:15, s. 8743-8763
  • Tidskriftsartikel (refereegranskat)abstract
    • Methods for determining aerosol types in cases where chemical composition measurements are not available are useful for improved aerosol radiative forcing estimates. In this study, two aerosol characterization methods by Cazorla et al. (2013, https://doi.org/10.5194/acp-13-9337-2013; CA13) and Costabile et al. (2013, https://doi.org/10.5194/acp-13-2455-2013; CO13) using wavelength‐dependent particle absorption and scattering are used, to assess their applicability and examine their limitations. Long‐term ambient particle optical property and chemical composition (major inorganic ions and bulk carbon) measurements from the Maldives Climate Observatory Hanimaadhoo as well as concurrent air mass trajectories are utilized to test the classifications based on the determined absorption Ångström exponent, scattering Ångström exponent, and single scattering albedo. The resulting aerosol types from the CA13 method show a good qualitative agreement with the particle chemical composition and air mass origin. In general, the size differentiation using the scattering Ångström exponent works very well for both methods, while the composition identification depending mainly on the absorption Ångström exponent can result in aerosol misclassifications at Maldives Climate Observatory Hanimaadhoo. To broaden the applicability of the CA13 method, we suggest to include an underlying marine aerosol group in the classification scheme. The classification of the CO13 method is less clear, and its applicability is limited when it is extended to aerosols in this environment at ambient humidity.
  •  
49.
  • Ickes, Luisa, 1986, et al. (författare)
  • The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal cultures
  • 2020
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:18, s. 11089-11117
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, sea spray as well as the biological material it contains has received increased attention as a source of ice-nucleating particles (INPs). Such INPs may play a role in remote marine regions, where other sources of INPs are scarce or absent. In the Arctic, these INPs can influence water-ice partitioning in low-level clouds and thereby the cloud lifetime, with consequences for the surface energy budget, sea ice formation and melt, and climate. Marine aerosol is of a diverse nature, so identifying sources of INPs is challenging. One fraction of marine bioaerosol (phytoplankton and their exudates) has been a particular focus of marine INP research. In our study we attempt to address three main questions. Firstly, we compare the ice-nucleating ability of two common phytoplankton species with Arctic seawater microlayer samples using the same instrumentation to see if these phytoplankton species produce ice-nucleating material with sufficient activity to account for the ice nucleation observed in Arctic microlayer samples. We present the first measurements of the ice-nucleating ability of two predominant phytoplankton species: Melosira arctica, a common Arctic diatom species, and Skeletonema marinoi, a ubiquitous diatom species across oceans worldwide. To determine the potential effect of nutrient conditions and characteristics of the algal culture, such as the amount of organic carbon associated with algal cells, on the ice nucleation activity, Skeletonema marinoi was grown under different nutrient regimes. From comparison of the ice nucleation data of the algal cultures to those obtained from a range of sea surface microlayer (SML) samples obtained during three different field expeditions to the Arctic (ACCACIA, NETCARE, and ASCOS), we found that they were not as ice active as the investigated microlayer samples, although these diatoms do produce ice-nucleating material. Secondly, to improve our understanding of local Arctic marine sources as atmospheric INPs we applied two aerosolization techniques to analyse the ice-nucleating ability of aerosolized microlayer and algal samples. The aerosols were generated either by direct nebulization of the undiluted bulk solutions or by the addition of the samples to a sea spray simulation chamber filled with artificial seawater. The latter method generates aerosol particles using a plunging jet to mimic the process of oceanic wave breaking. We observed that the aerosols produced using this approach can be ice active, indicating that the ice-nucleating material in seawater can indeed transfer to the aerosol phase. Thirdly, we attempted to measure ice nucleation activity across the entire temperature range relevant for mixed-phase clouds using a suite of ice nucleation measurement techniques - an expansion cloud chamber, a continuous-flow diffusion chamber, and a cold stage. In order to compare the measurements made using the different instruments, we have normalized the data in relation to the mass of salt present in the nascent sea spray aerosol. At temperatures above 248K some of the SML samples were very effective at nucleating ice, but there was substantial variability between the different samples. In contrast, there was much less variability between samples below 248 K. We discuss our results in the context of aerosol-cloud interactions in the Arctic with a focus on furthering our understanding of which INP types may be important in the Arctic atmosphere.
  •  
50.
  • Igel, Adele L., et al. (författare)
  • The free troposphere as a potential source of arctic boundary layer aerosol particles
  • 2017
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 44:13, s. 7053-7060
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates aerosol particle transport from the free troposphere to the boundary layer in the summertime high Arctic. Observations from the Arctic Summer Cloud Ocean Study field campaign show several occurrences of high aerosol particle concentrations above the boundary layer top. Large-eddy simulations suggest that when these enhanced aerosol concentrations are present, they can be an important source of aerosol particles for the boundary layer. Most particles are transported to the boundary layer by entrainment. However, it is found that mixed-phase stratocumulus clouds, which often extend into the inversion layer, also can mediate the transport of particles into the boundary layer by activation at cloud top and evaporation below cloud base. Finally, the simulations also suggest that aerosol properties at the surface sometimes may not be good indicators of aerosol properties in the cloud layer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-50 av 110
Typ av publikation
tidskriftsartikel (86)
annan publikation (11)
doktorsavhandling (9)
bokkapitel (3)
rapport (1)
Typ av innehåll
refereegranskat (85)
övrigt vetenskapligt/konstnärligt (25)
Författare/redaktör
Leck, Caroline (101)
Tjernström, Michael (18)
Ågren, Hans (13)
Tu, Yaoquan (12)
Li, Xin (10)
Ekman, Annica M. L. (9)
visa fler...
Salter, Matthew E. (9)
Brooks, I. M. (8)
Zieger, Paul (8)
Heintzenberg, Jost (7)
Persson, P. O. G. (6)
Nilsson, Ulrika (6)
Bigg, E Keith (6)
Birch, C. E. (6)
Mauritsen, T. (6)
Leck, Caroline, Prof ... (6)
Karl, Matthias (6)
Riipinen, Ilona (5)
Sjögren, Staffan (5)
Shupe, M. D. (5)
Bulatovic, Ines (5)
Sun, Lu (5)
Swietlicki, Erik (4)
Schmale, Julia (4)
Savre, Julien (4)
Sedlar, J. (4)
Gao, Qiuju (4)
Sedlar, Joseph (4)
Sierau, B. (4)
Chang, R. Y. -W (4)
Paatero, J. (4)
Murray, Benjamin J. (4)
Martin, M. (3)
Mueller, M. (3)
Ilag, Leopold L (3)
Brooks, Ian M. (3)
Tunved, Peter (3)
Karlsson, Linn (3)
Brännlund, Runar (3)
Held, A (3)
Schmale, J. (3)
Hansel, A. (3)
Heintzenberg, J. (3)
Graus, M. (3)
Leaitch, W. R. (3)
Ickes, Luisa, 1986 (3)
Pirjola, Liisa (3)
Engström, Erik, 1976 ... (3)
Porter, Grace C.E. (3)
Matrai, Patricia A. (3)
visa färre...
Lärosäte
Stockholms universitet (105)
Kungliga Tekniska Högskolan (14)
Lunds universitet (6)
Uppsala universitet (3)
Chalmers tekniska högskola (3)
Luleå tekniska universitet (2)
visa fler...
Örebro universitet (2)
Sveriges Lantbruksuniversitet (2)
Linköpings universitet (1)
visa färre...
Språk
Engelska (107)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (100)
Samhällsvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy