SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ledder Glenn) "

Sökning: WFRF:(Ledder Glenn)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Couvreur, Valentin, et al. (författare)
  • Water transport through tall trees : A vertically explicit, analytical model of xylem hydraulic conductance in stems
  • 2018
  • Ingår i: Plant, Cell and Environment. - : Wiley. - 0140-7791 .- 1365-3040. ; 41:8, s. 1821-1839
  • Tidskriftsartikel (refereegranskat)abstract
    • Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially explicit, analytical water transport model for stems. Our model allows Huber ratio, stem-saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole-stem emergent property resulting from non-linear pressure-conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits.
  •  
2.
  • Ledder, Glenn, et al. (författare)
  • An optimal control problem for resource utilisation by microorganisms
  • 2024
  • Ingår i: International Journal of Mathematical Education in Science and Technology. - 0020-739X .- 1464-5211. ; 55:2, s. 547-564
  • Tidskriftsartikel (refereegranskat)abstract
    • Decomposition of organic matter controls the flow of carbon and nutrients in terrestrial and aquatic ecosystems. Several kinetic laws have been proposed to describe decomposition rates, but they neglect adaptation of the microbial decomposer to environmental conditions. Here we formalise decomposition as an optimal control problem by assuming that microorganisms regulate the uptake rate of a substrate to maximise their growth over the period of decomposition. The result is an optimal control problem consisting of two differential equations and auxiliary conditions that determine the optimal value of the control variable (the uptake rate), the remaining substrate at any given time, and the optimal completion time. This problem serves as a case study to illustrate the solution of differential equations and optimal control problems for students in undergraduate courses. The mathematical analysis of the problem requires rewriting the differential equations in reverse time along with the solution of a nonhomogeneous linear first order differential equation. We then return to modelling with some biologically motivated questions about how the parameters of the model representing environmental conditions and microbial functional traits affect the outcome. Finally, we discuss alternative ways to use the material with students.
  •  
3.
  • Manzoni, Stefano, et al. (författare)
  • Decomposition rate as an emergent property of optimal microbial foraging
  • 2023
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media SA. - 2296-701X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Decomposition kinetics are fundamental for quantifying carbon and nutrient cycling in terrestrial and aquatic ecosystems. Several theories have been proposed to construct process-based kinetics laws, but most of these theories do not consider that microbial decomposers can adapt to environmental conditions, thereby modulating decomposition. Starting from the assumption that a homogeneous microbial community maximizes its growth rate over the period of decomposition, we formalize decomposition as an optimal control problem where the decomposition rate is a control variable. When maintenance respiration is negligible, we find that the optimal decomposition kinetics scale as the square root of the substrate concentration, resulting in growth kinetics following a Hill function with exponent 1/2 (rather than the Monod growth function). When maintenance respiration is important, optimal decomposition is a more complex function of substrate concentration, which does not decrease to zero as the substrate is depleted. With this optimality-based formulation, a trade-off emerges between microbial carbon-use efficiency (ratio of growth rate over substrate uptake rate) and decomposition rate at the beginning of decomposition. In environments where carbon substrates are easily lost due to abiotic or biotic factors, microbes with higher uptake capacity and lower efficiency are selected, compared to environments where substrates remain available. The proposed optimization framework provides an alternative to purely empirical or process-based formulations for decomposition, allowing exploration of the effects of microbial adaptation on element cycling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy