SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lee Bang Yong) "

Sökning: WFRF:(Lee Bang Yong)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lee, Haebum, et al. (författare)
  • Atmospheric new particle formation characteristics in the Arctic as measured at Mount Zeppelin, Svalbard, from 2016 to 2018
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:21, s. 13425-13441
  • Tidskriftsartikel (refereegranskat)abstract
    • We conducted continuous measurements of nanoparticles down to 3 nm size in the Arctic at Mount Zeppelin, Ny Ålesund, Svalbard, from October 2016 to December 2018, providing a size distribution of nanoparticles (3–60 nm). A significant number of nanoparticles as small as 3 nm were often observed during new particle formation (NPF), particularly in summer, suggesting that these were likely produced near the site rather than being transported from other regions after growth. The average NPF frequency per year was 23 %, having the highest percentage in August (63 %). The average formation rate (J) and growth rate (GR) for 3–7 nm particles were 0.04 cm−3 s−1 and 2.07 nm h−1, respectively. Although NPF frequency in the Arctic was comparable to that in continental areas, the J and GR were much lower. The number of nanoparticles increased more frequently when air mass originated over the south and southwest ocean regions; this pattern overlapped with regions having strong chlorophyll a concentration and dimethyl sulfide (DMS) production capacity (southwest ocean) and was also associated with increased NH3 and H2SO4 concentration, suggesting that marine biogenic sources were responsible for gaseous precursors to NPF. Our results show that previously developed NPF occurrence criteria (low loss rate and high cluster growth rate favor NPF) are also applicable to NPF in the Arctic.
  •  
2.
  • Jang, Sehyun, et al. (författare)
  • Large seasonal and interannual variations of biogenic sulfur compounds in the Arctic atmosphere (Svalbard; 78.9° N, 11.9° E)
  • 2021
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:12, s. 9761-9777
  • Tidskriftsartikel (refereegranskat)abstract
    • Seasonal to interannual variations in the concentrations of sulfur aerosols (< 2.5 µm in diameter; non sea-salt sulfate: NSS-SO2−4; anthropogenic sulfate: Anth-SO2−4; biogenic sulfate: Bio-SO2−4; methanesulfonic acid: MSA) in the Arctic atmosphere were investigated using measurements of the chemical composition of aerosols collected at Ny-Ålesund, Svalbard (78.9∘ N, 11.9∘ E) from 2015 to 2019. In all measurement years the concentration of NSS-SO2−4 was highest during the pre-bloom period and rapidly decreased towards summer. During the pre-bloom period we found a strong correlation between NSS-SO2−4 (sum of Anth-SO2−4 and Bio-SO2−4) and Anth-SO2−4. This was because more than 50 % of the NSS-SO2−4 measured during this period was Anth-SO2−4, which originated in northern Europe and was subsequently transported to the Arctic in Arctic haze. Unexpected increases in the concentration of Bio-SO2−4 aerosols (an oxidation product of dimethylsulfide: DMS) were occasionally found during the pre-bloom period. These probably originated in regions to the south (the North Atlantic Ocean and the Norwegian Sea) rather than in ocean areas in the proximity of Ny-Ålesund. Another oxidation product of DMS is MSA, and the ratio of MSA to Bio-SO2−4 is extensively used to estimate the total amount of DMS-derived aerosol particles in remote marine environments. The concentration of MSA during the pre-bloom period remained low, primarily because of the greater loss of MSA relative to Bio-SO2−4 and the suppression of condensation of gaseous MSA onto particles already present in air masses being transported northwards from distant ocean source regions (existing particles). In addition, the low light intensity during the pre-bloom period resulted in a low concentration of photochemically activated oxidant species including OH radicals and BrO; these conditions favored the oxidation pathway of DMS to Bio-SO2−4 rather than to MSA, which acted to lower the MSA concentration at Ny-Ålesund. The concentration of MSA peaked in May or June and was positively correlated with phytoplankton biomass in the Greenland and Barents seas around Svalbard. As a result, the mean ratio of MSA to the DMS-derived aerosols was low (0.09 ± 0.07) in the pre-bloom period but high (0.32 ± 0.15) in the bloom and post-bloom periods. There was large interannual variability in the ratio of MSA to Bio-SO2−4 (i.e., 0.24 ± 0.11 in 2017, 0.40 ± 0.14 in 2018, and 0.36 ± 0.14 in 2019) during the bloom and post-bloom periods. This was probably associated with changes in the chemical properties of existing particles, biological activities surrounding the observation site, and air mass transport patterns. Our results indicate that MSA is not a conservative tracer for predicting DMS-derived particles, and the contribution of MSA to the growth of newly formed particles may be much larger during the bloom and post-bloom periods than during the pre-bloom period.
  •  
3.
  • Park, Ki-Tae, et al. (författare)
  • Dimethyl Sulfide-Induced Increase in Cloud Condensation Nuclei in the Arctic Atmosphere
  • 2021
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 35:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Oceanic dimethyl sulfide (DMS) emissions have been recognized as a biological regulator of climate by contributing to cloud formation. Despite decades of research, the climatic role of DMS remains ambiguous largely because of limited observational evidence for DMS-induced cloud condensation nuclei (CCN) enhancement. Here, we report concurrent measurement of DMS, physiochemical properties of aerosol particles, and CCN in the Arctic atmosphere during the phytoplankton bloom period of 2010. We encountered multiple episodes of new particle formation (NPF) and particle growth when DMS mixing ratios were both low and high. The growth of particles to sizes at which they can act as CCN accelerated in response to an increase in atmospheric DMS. Explicitly, the sequential increase in all relevant parameters (including the source rate of condensable vapor, the growth rate of particles, Aitken mode particles, hygroscopicity, and CCN) was pronounced at the DMS-derived NPF and particle growth events. This field study unequivocally demonstrates the previously unconfirmed roles of DMS in the growth of particles into climate-relevant size and eventual CCN activation.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Jung, Chang Hoon, et al. (författare)
  • The seasonal characteristics of cloud condensation nuclei (CCN) in the arctic lower troposphere
  • 2018
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 70:1, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Cloud Condensation Nuclei (CCN) concentration and aerosol size distributions in the Arctic were collected during the period 2007-2013 at the Zeppelin observatory (78.91 degrees N, 11.89 degrees E, 474 masl). Annual median CCN concentration at a supersaturation (SS) of 0.4% show the ranges of 45 approximate to 81cm(-3). The monthly median CCN number density varied between 17cm(-3) in October 2007 and 198cm(-3) in March, 2008. The CCN spectra parameters C (83cm(-3)) and k (0.23) were derived. In addition, calculated annual median value of hygroscopicity parameter is 0.46 at SS of 0.4%. Particle number concentration of accumulation mode from aerosol size distribution measurements are well correlated with CCN concentration. The CCN to CN>10 nm (particle number concentration larger than 10nm in diameter) ratio shows a maximum during March and minimum during July. The springtime high CCN concentration is attributed to high load of accumulation mode aerosol transported from the mid-latitudes, known as Arctic Haze. CCN concentration remains high also during Arctic summer due to the source of new CCN through particle formation followed by consecutive aerosol growth. Lowest aerosol as well as CCN number densities were observed during Arctic autumn and early winter when aerosol formation in the Arctic and long-range transport into the Arctic are not effective.
  •  
8.
  • Kropp, Heather, et al. (författare)
  • Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems
  • 2021
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (>40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy