SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lehmann Mareike) "

Sökning: WFRF:(Lehmann Mareike)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Conlon, Thomas M, et al. (författare)
  • Inhibition of LTβR signalling activates WNT-induced regeneration in lung
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 588:7836, s. 151-156
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphotoxin β-receptor (LTβR) signalling promotes lymphoid neogenesis and the development of tertiary lymphoid structures1,2, which are associated with severe chronic inflammatory diseases that span several organ systems3-6. How LTβR signalling drives chronic tissue damage particularly in the lung, the mechanism(s) that regulate this process, and whether LTβR blockade might be of therapeutic value have remained unclear. Here we demonstrate increased expression of LTβR ligands in adaptive and innate immune cells, enhanced non-canonical NF-κB signalling, and enriched LTβR target gene expression in lung epithelial cells from patients with smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke. Therapeutic inhibition of LTβR signalling in young and aged mice disrupted smoking-related inducible bronchus-associated lymphoid tissue, induced regeneration of lung tissue, and reverted airway fibrosis and systemic muscle wasting. Mechanistically, blockade of LTβR signalling dampened epithelial non-canonical activation of NF-κB, reduced TGFβ signalling in airways, and induced regeneration by preventing epithelial cell death and activating WNT/β-catenin signalling in alveolar epithelial progenitor cells. These findings suggest that inhibition of LTβR signalling represents a viable therapeutic option that combines prevention of tertiary lymphoid structures1 and inhibition of apoptosis with tissue-regenerative strategies.
  •  
2.
  • Costa, Rita, et al. (författare)
  • A drug screen with approved compounds identifies amlexanox as a novel Wnt/β-catenin activator inducing lung epithelial organoid formation
  • 2021
  • Ingår i: British Journal of Pharmacology. - : Wiley. - 0007-1188 .- 1476-5381. ; 178:19, s. 4026-4041
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose: Emphysema is an incurable disease characterized by loss of lung tissue leading to impaired gas exchange. Wnt/β-catenin signalling is reduced in emphysema, and exogenous activation of the pathway in experimental models in vivo and in human ex vivo lung tissue improves lung function and structure. We sought to identify a pharmaceutical able to activate Wnt/β-catenin signalling and assess its potential to activate lung epithelial cells and repair. Experimental Approach: We screened 1216 human-approved compounds for Wnt/β-catenin signalling activation using luciferase reporter cells and selected candidates based on their computationally predicted protein targets. We further performed confirmatory luciferase reporter and metabolic activity assays. Finally, we studied the regenerative potential in murine adult epithelial cell-derived lung organoids and in vivo using a murine elastase-induced emphysema model. Key Results: The primary screen identified 16 compounds that significantly induced Wnt/β-catenin-dependent luciferase activity. Selected compounds activated Wnt/β-catenin signalling without inducing cell toxicity or proliferation. Two compounds were able to promote organoid formation, which was reversed by pharmacological Wnt/β-catenin inhibition, confirming the Wnt/β-catenin-dependent mechanism of action. Amlexanox was used for in vivo evaluation, and preventive treatment resulted in improved lung function and structure in emphysematous mouse lungs. Moreover, gene expression of Hgf, an important alveolar repair marker, was increased, whereas disease marker Eln was decreased, indicating that amlexanox induces pro-regenerative signalling in emphysema. Conclusion and Implications: Using a drug screen based on Wnt/β-catenin activity, organoid assays and a murine emphysema model, amlexanox was identified as a novel potential therapeutic agent for emphysema.
  •  
3.
  • Cuevas Ocaña, Sara, et al. (författare)
  • ERS International Congress 2022 : highlights from the Basic and Translational Science Assembly
  • 2023
  • Ingår i: ERJ open research. - : European Respiratory Society (ERS). - 2312-0541. ; 9:2
  • Forskningsöversikt (refereegranskat)abstract
    • In this review, the Basic and Translational Science Assembly of the European Respiratory Society provides an overview of the 2022 International Congress highlights. We discuss the consequences of respiratory events from birth until old age regarding climate change related alterations in air quality due to pollution caused by increased ozone, pollen, wildfires and fuel combustion as well as the increasing presence of microplastic and microfibres. Early life events such as the effect of hyperoxia in the context of bronchopulmonary dysplasia and crucial effects of the intrauterine environment in the context of pre-eclampsia were discussed. The Human Lung Cell Atlas (HLCA) was put forward as a new point of reference for healthy human lungs. The combination of single-cell RNA sequencing and spatial data in the HLCA has enabled the discovery of new cell types/states and niches, and served as a platform that facilitates further investigation of mechanistic perturbations. The role of cell death modalities in regulating the onset and progression of chronic lung diseases and its potential as a therapeutic target was also discussed. Translational studies identified novel therapeutic targets and immunoregulatory mechanisms in asthma. Lastly, it was highlighted that the choice of regenerative therapy depends on disease severity, ranging from transplantation to cell therapies and regenerative pharmacology.
  •  
4.
  • D. Ubags, Niki, et al. (författare)
  • ERS International Congress, Madrid, 2019: highlights from the Basic and translational Science Assembly
  • 2020
  • Ingår i: ERJ Open Research. - : European Respiratory Society (ERS). - 2312-0541. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this review, the Basic and Translational Sciences Assembly of the European Respiratory Society (ERS) provides an overview of the 2019 ERS International Congress highlights. In particular, we discuss how the novel and very promising technology of single cell sequencing has led to the development of a comprehensive map of the human lung, the lung cell atlas, including the discovery of novel cell types and new insights into cellular trajectories in lung health and disease. Further, we summarise recent insights in the field of respiratory infections, which can aid in a better understanding of the molecular mechanisms underlying these infections in order to develop novel vaccines and improved treatment options. Novel concepts delineating the early origins of lung disease are focused on the effects of pre- and post-natal exposures on neonatal lung development and long-term lung health. Moreover, we discuss how these early life exposures can affect the lung microbiome and respiratory infections. In addition, the importance of metabolomics and mitochondrial function analysis to subphenotype chronic lung disease patients according to their metabolic program is described. Finally, basic and translational respiratory science is rapidly moving forward and this will be beneficial for an advanced molecular understanding of the mechanisms underlying a variety of lung diseases. In the long-term this will aid in the development of novel therapeutic targeting strategies in the field of respiratory medicine.
  •  
5.
  • Ikonomou, Laertis, et al. (författare)
  • Stem cells, cell therapies, and bioengineering in lung biology and disease 2021
  • 2022
  • Ingår i: American Journal of Physiology - Lung Cellular and Molecular Physiology. - : American Physiological Society. - 1040-0605 .- 1522-1504. ; 323:3, s. 341-354
  • Forskningsöversikt (refereegranskat)abstract
    • The 9th biennial conference titled “Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases” was hosted virtually, due to the ongoing COVID-19 pandemic, in collaboration with the University of Vermont Larner College of Medicine, the National Heart, Lung, and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, and the International Society for Cell & Gene Therapy. The event was held from July 12th through 15th, 2021 with a pre-conference workshop held on July 9th. As in previous years, the objectives remained to review and discuss the status of active research areas involving stem cells (SCs), cellular therapeutics, and bioengineering as they relate to the human lung. Topics included 1) technological advancements in the in situ analysis of lung tissues, 2) new insights into stem cell signaling and plasticity in lung remodeling and regeneration, 3) the impact of extracellular matrix in stem cell regulation and airway engineering in lung regeneration, 4) differentiating and delivering stem cell therapeutics to the lung, 5) regeneration in response to viral infection, and 6) ethical development of cell-based treatments for lung diseases. This selection of topics represents some of the most dynamic and current research areas in lung biology.
  •  
6.
  • Lehmann, Mareike, et al. (författare)
  • Differential effects of Nintedanib and Pirfenidone on lung alveolar epithelial cell function in ex vivo murine and human lung tissue cultures of pulmonary fibrosis 11 Medical and Health Sciences 1102 Cardiorespiratory Medicine and Haematology 06 Biological Sciences 0601 Biochemistry and Cell Biology
  • 2018
  • Ingår i: Respiratory Research. - : Springer Science and Business Media LLC. - 1465-9921 .- 1465-993X. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Repetitive injury and reprogramming of the lung epithelium are thought to be critical drivers of disease progression, contributing to fibroblast activation, extracellular matrix remodeling, and subsequently loss of lung architecture and function. To date, Pirfenidone and Nintedanib are the only approved drugs known to decelerate disease progression, however, if and how these drugs affect lung epithelial cell function, remains largely unexplored. Methods: We treated murine and human 3D ex vivo lung tissue cultures (3D-LTCs; generated from precision cut lung slices (PCLS)) as well as primary murine alveolar epithelial type II (pmATII) cells with Pirfenidone or Nintedanib. Murine 3D-LTCs or pmATII cells were derived from the bleomycin model of fibrosis. Early fibrotic changes were induced in human 3D-LTCs by a mixture of profibrotic factors. Epithelial and mesenchymal cell function was determined by qPCR, Western blotting, Immunofluorescent staining, and ELISA. Results: Low μM concentrations of Nintedanib (1 μM) and mM concentrations of Pirfenidone (2.5 mM) reduced fibrotic gene expression including Collagen 1a1 and Fibronectin in murine and human 3D-LTCs as well as pmATII cells. Notably, Nintedanib stabilized expression of distal lung epithelial cell markers, especially Surfactant Protein C in pmATII cells as well as in murine and human 3D-LTCs. Conclusions: Pirfenidone and Nintedanib exhibit distinct effects on murine and human epithelial cells, which might contribute to their anti-fibrotic action. Human 3D-LTCs represent a valuable tool to assess anti-fibrotic mechanisms of potential drugs for the treatment of IPF patients.
  •  
7.
  • Melo-Narváez, M. Camila, et al. (författare)
  • Lung regeneration : implications of the diseased niche and ageing
  • 2020
  • Ingår i: European Respiratory Review. - : European Respiratory Society (ERS). - 0905-9180 .- 1600-0617. ; 29:157
  • Tidskriftsartikel (refereegranskat)abstract
    • Most chronic and acute lung diseases have no cure, leaving lung transplantation as the only option. Recent work has improved our understanding of the endogenous regenerative capacity of the lung and has helped identification of different progenitor cell populations, as well as exploration into inducing endogenous regeneration through pharmaceutical or biological therapies. Additionally, alternative approaches that aim at replacing lung progenitor cells and their progeny through cell therapy, or whole lung tissue through bioengineering approaches, have gained increasing attention. Although impressive progress has been made, efforts at regenerating functional lung tissue are still ineffective. Chronic and acute lung diseases are most prevalent in the elderly and alterations in progenitor cells with ageing, along with an increased inflammatory milieu, present major roadblocks for regeneration. Multiple cellular mechanisms, such as cellular senescence and mitochondrial dysfunction, are aberrantly regulated in the aged and diseased lung, which impairs regeneration. Existing as well as new human in vitro models are being developed, improved and adapted in order to study potential mechanisms of lung regeneration in different contexts. This review summarises recent advances in understanding endogenous as well as exogenous regeneration and the development of in vitro models for studying regenerative mechanisms.
  •  
8.
  • Ota, Chiharu, et al. (författare)
  • Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms of injury and repair in alveolar epithelial cells (AECs) are critically involved in the progression of various lung diseases including idiopathic pulmonary fibrosis (IPF). Homeobox only protein x (HOPX) contributes to the formation of distal lung during development. In adult lung, alveolar epithelial type (AT) I cells express HOPX and lineage-labeled Hopx+ cells give rise to both ATI and ATII cells after pneumonectomy. However, the cell function of HOPX-expressing cells in adult fibrotic lung diseases has not been investigated. In this study, we have established a flow cytometry-based method to evaluate HOPX-expressing cells in the lung. HOPX expression in cultured ATII cells increased over culture time, which was accompanied by a decrease of proSP-C, an ATII marker. Moreover, HOPX expression was increased in AECs from bleomycin-instilled mouse lungs in vivo. Small interfering RNA-based knockdown of Hopx resulted in suppressing ATII-ATI trans-differentiation and activating cellular proliferation in vitro. In IPF lungs, HOPX expression was decreased in whole lungs and significantly correlated to a decline in lung function and progression of IPF. In conclusion, HOPX is upregulated during early alveolar injury and repair process in the lung. Decreased HOPX expression might contribute to failed regenerative processes in end-stage IPF lungs.
  •  
9.
  • Ulke, Henrik M, et al. (författare)
  • The Oncogene ECT2 Contributes to a Hyperplastic, Proliferative Lung Epithelial Cell Phenotype in Idiopathic Pulmonary Fibrosis
  • 2019
  • Ingår i: American Journal of Respiratory Cell and Molecular Biology. - 1535-4989. ; 61:6, s. 713-726
  • Tidskriftsartikel (refereegranskat)abstract
    • Idiopathic pulmonary fibrosis (IPF) and lung cancer represent progressive lung diseases with a poor prognosis. IPF represents a risk factor for the development of lung cancer, and the incidence of lung cancer is increased in patients with IPF. Disease pathogenesis of IPF and lung cancer involves common genetic alterations, dysregulated pathways, and the emergence of hyperplastic and metaplastic epithelial cells. Here, we aimed to identify novel, common mediators that might contribute to epithelial cell reprogramming in IPF. Gene set enrichment analysis (GSEA) of publicly available non-small cell lung cancer (NSCLC) and IPF datasets revealed a common pattern of misregulated genes, linked to cell proliferation and transformation. The oncogene epithelial cell transforming sequence 2 (ECT2), a guanine nucleotide exchange factor (GEF) for Rho GTPases, was highly enriched in both, IPF and NSCLC, compared to non-diseased controls. Increased expression of ECT2 was verified by qPCR and Western blotting in bleomycin-induced lung fibrosis and human IPF tissue. Immunohistochemistry demonstrated strong expression of ECT2 staining in hyperplastic type II alveolar epithelial (ATII) cells in IPF, as well as its colocalization with PCNA, a well-known proliferation marker. Increased ECT2 expression coincided with enhanced proliferation of primary mouse ATII cells as analyzed by flow cytometric analysis. ECT2 knockdown in ATII cells resulted in decreased proliferation and collagen I expression in vitro. These data suggest that the oncogene ECT2 contributes to epithelial cell reprogramming in IPF and further underline the hyperplastic, proliferative ATII cell as a potential target in patients with IPF and lung cancer.
  •  
10.
  • Wagner, Darcy E, et al. (författare)
  • Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2019
  • 2020
  • Ingår i: ERJ Open Research. - : European Respiratory Society (ERS). - 2312-0541. ; 6:4
  • Forskningsöversikt (refereegranskat)abstract
    • A workshop entitled "Stem Cells, Cell Therapies and Bioengineering in Lung Biology and Diseases" was hosted by the University of Vermont Larner College of Medicine in collaboration with the National Heart, Lung and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, the International Society for Cell and Gene Therapy and the Pulmonary Fibrosis Foundation. The event was held from July 15 to 18, 2019 at the University of Vermont, Burlington, Vermont. The objectives of the conference were to review and discuss the current status of the following active areas of research: 1) technological advancements in the analysis and visualisation of lung stem and progenitor cells; 2) evaluation of lung stem and progenitor cells in the context of their interactions with the niche; 3) progress toward the application and delivery of stem and progenitor cells for the treatment of lung diseases such as cystic fibrosis; 4) progress in induced pluripotent stem cell models and application for disease modelling; and 5) the emerging roles of cell therapy and extracellular vesicles in immunomodulation of the lung. This selection of topics represents some of the most dynamic research areas in which incredible progress continues to be made. The workshop also included active discussion on the regulation and commercialisation of regenerative medicine products and concluded with an open discussion to set priorities and recommendations for future research directions in basic and translation lung biology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy