SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lehtipalo Katrianne) "

Sökning: WFRF:(Lehtipalo Katrianne)

  • Resultat 1-25 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almeida, Joao, et al. (författare)
  • Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 502:7471, s. 359-
  • Tidskriftsartikel (refereegranskat)abstract
    • Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes(2). Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases(2). However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere(3). It is thought that amines may enhance nucleation(4-16), but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
  •  
2.
  • Artaxo, Paulo, et al. (författare)
  • Tropical and Boreal Forest – Atmosphere Interactions : A Review
  • 2022
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 74:1, s. 24-163
  • Forskningsöversikt (refereegranskat)abstract
    • This review presents how the boreal and the tropical forests affect the atmosphere, its chemical composition, its function, and further how that affects the climate and, in return, the ecosystems through feedback processes. Observations from key tower sites standing out due to their long-term comprehensive observations: The Amazon Tall Tower Observatory in Central Amazonia, the Zotino Tall Tower Observatory in Siberia, and the Station to Measure Ecosystem-Atmosphere Relations at Hyytiäla in Finland. The review is complemented by short-term observations from networks and large experiments.The review discusses atmospheric chemistry observations, aerosol formation and processing, physiochemical aerosol, and cloud condensation nuclei properties and finds surprising similarities and important differences in the two ecosystems. The aerosol concentrations and chemistry are similar, particularly concerning the main chemical components, both dominated by an organic fraction, while the boreal ecosystem has generally higher concentrations of inorganics, due to higher influence of long-range transported air pollution. The emissions of biogenic volatile organic compounds are dominated by isoprene and monoterpene in the tropical and boreal regions, respectively, being the main precursors of the organic aerosol fraction.Observations and modeling studies show that climate change and deforestation affect the ecosystems such that the carbon and hydrological cycles in Amazonia are changing to carbon neutrality and affect precipitation downwind. In Africa, the tropical forests are so far maintaining their carbon sink.It is urgent to better understand the interaction between these major ecosystems, the atmosphere, and climate, which calls for more observation sites, providing long-term data on water, carbon, and other biogeochemical cycles. This is essential in finding a sustainable balance between forest preservation and reforestation versus a potential increase in food production and biofuels, which are critical in maintaining ecosystem services and global climate stability. Reducing global warming and deforestation is vital for tropical forests.
  •  
3.
  • Boyer, Matthew, et al. (författare)
  • A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation : insights from the Multidisciplinarydrifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 23:1, s. 389-415
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic environment is rapidly changing due to accelerated warming in the region. The warming trend is driving a decline in sea ice extent, which thereby enhances feedback loops in the surface energy budget in the Arctic. Arctic aerosols play an important role in the radiative balance and hence the climate response in the region, yet direct observations of aerosols over the Arctic Ocean are limited. In this study, we investigate the annual cycle in the aerosol particle number size distribution (PNSD), particle number concentration (PNC), and black carbon (BC) mass concentration in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. This is the first continuous, year-long data set of aerosol PNSD ever collected over the sea ice in the central Arctic Ocean. We use a k-means cluster analysis, FLEXPART simulations, and inverse modeling to evaluate seasonal patterns and the influence of different source regions on the Arctic aerosol population. Furthermore, we compare the aerosol observations to land-based sites across the Arctic, using both long-term measurements and observations during the year of the MOSAiC expedition (2019–2020), to investigate interannual variability and to give context to the aerosol characteristics from within the central Arctic. Our analysis identifies that, overall, the central Arctic exhibits typical seasonal patterns of aerosols, including anthropogenic influence from Arctic haze in winter and secondary aerosol processes in summer. The seasonal pattern corresponds to the global radiation, surface air temperature, and timing of sea ice melting/freezing, which drive changes in transport patterns and secondary aerosol processes. In winter, the Norilsk region in Russia/Siberia was the dominant source of Arctic haze signals in the PNSD and BC observations, which contributed to higher accumulation-mode PNC and BC mass concentrations in the central Arctic than at land-based observatories. We also show that the wintertime Arctic Oscillation (AO) phenomenon, which was reported to achieve a record-breaking positive phase during January–March 2020, explains the unusual timing and magnitude of Arctic haze across the Arctic region compared to longer-term observations. In summer, the aerosol PNCs of the nucleation and Aitken modes are enhanced; however, concentrations were notably lower in the central Arctic over the ice pack than at land-based sites further south. The analysis presented herein provides a current snapshot of Arctic aerosol processes in an environment that is characterized by rapid changes, which will be crucial for improving climate model predictions, understanding linkages between different environmental processes, and investigating the impacts of climate change in future Arctic aerosol studies.
  •  
4.
  • Cai, Jing, et al. (författare)
  • Elucidating the mechanisms of atmospheric new particle formation in the highly polluted Po Valley, Italy
  • 2024
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 24:4, s. 2423-2441
  • Tidskriftsartikel (refereegranskat)abstract
    • New particle formation (NPF) is a major source of aerosol particles and cloud condensation nuclei in the troposphere, playing an important role in both air quality and climate. Frequent NPF events have been observed in heavily polluted urban environments, contributing to the aerosol number concentration by a significant amount. The Po Valley region in northern Italy has been characterized as a hotspot for high aerosol loadings and frequent NPF events in southern Europe. However, the mechanisms of NPF and growth in this region are not completely understood. In this study, we conducted a continuous 2-month measurement campaign with state-of-the-art instruments to elucidate the NPF and growth mechanisms in northern Italy. Our results demonstrate that frequent NPF events (66% of all days during the measurement campaign) are primarily driven by abundant sulfuric acid (8.5×106cm-3) and basic molecules in this area. In contrast, oxygenated organic molecules from the atmospheric oxidation of volatile organic compounds (VOCs) appear to play a minor role in the initial cluster formation but contribute significantly to the consecutive growth process. Regarding alkaline molecules, amines are insufficient to stabilize all sulfuric acid clusters in the Po Valley. Ion cluster measurements and kinetic models suggest that ammonia (10ppb) must therefore also play a role in the nucleation process. Generally, the high formation rates of sub-2nm particles (87cm-3s-1) and nucleation-mode growth rates (5.1nmh-1) as well as the relatively low condensational sink (8.9×10-3s-1) will result in a high survival probability for newly formed particles, making NPF crucial for the springtime aerosol number budget. Our results also indicate that reducing key pollutants, such as SO2, amine and NH3, could help to substantially decrease the particle number concentrations in the Po Valley region.
  •  
5.
  • Huang, Wei, et al. (författare)
  • Potential pre-industrial–like new particle formation induced by pure biogenic organic vapors in Finnish peatland
  • 2024
  • Ingår i: Science Advances. - 2375-2548. ; 10:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Pure biogenic new particle formation (NPF) induced by highly oxygenated organic molecules (HOMs) could be an important mechanism for pre-industrial aerosol formation. However, it has not been unambiguously confirmed in the ambient due to the scarcity of truly pristine continental locations in the present-day atmosphere or the lack of chemical characterization of NPF precursors. Here, we report ambient observations of pure biogenic HOM-driven NPF over a peatland in southern Finland. Meteorological decoupling processes formed an “air pocket” (i.e., a very shallow surface layer) at night and favored NPF initiated entirely by biogenic HOM from this peatland, whose atmospheric environment closely resembles that of the pre-industrial era. Our study sheds light on pre-industrial aerosol formation, which represents the baseline for estimating the impact of present and future aerosol on climate, as well as on future NPF, the features of which may revert toward pre-industrial–like conditions due to air pollution mitigation.
  •  
6.
  • Kirkby, Jasper, et al. (författare)
  • Atmospheric new particle formation from the CERN CLOUD experiment
  • 2023
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 16:11, s. 948-957
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol particles in the atmosphere profoundly influence public health and climate. Ultrafine particles enter the body through the lungs and can translocate to essentially all organs, and they represent a major yet poorly understood health risk. Human activities have considerably increased aerosols and cloudiness since preindustrial times, but they remain persistently uncertain and underrepresented in global climate models. Here we present a synthesis of the current understanding of atmospheric new particle formation derived from laboratory measurements at the CERN CLOUD chamber. Whereas the importance of sulfuric acid has long been recognized, condensable vapours such as highly oxygenated organics and iodine oxoacids also play key roles, together with stabilizers such as ammonia, amines and ions from galactic cosmic rays. We discuss how insights from CLOUD experiments are helping to interpret new particle formation in different atmospheric environments, and to provide a mechanistic foundation for air quality and climate models. The CLOUD experiment provides important insights into new particle formation in different atmospheric environments.
  •  
7.
  • Kirkby, Jasper, et al. (författare)
  • Ion-induced nucleation of pure biogenic particles
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 533:7604, s. 521-526
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood(1). Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours(2). It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere(3,4), and that ions have a relatively minor role(5). Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded(6,7). Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of a-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
  •  
8.
  • Kontkanen, Jenni, et al. (författare)
  • Growth of atmospheric clusters involving cluster-cluster collisions : comparison of different growth rate methods
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:9, s. 5545-5560
  • Tidskriftsartikel (refereegranskat)abstract
    • We simulated the time evolution of atmospheric cluster concentrations in a one-component system where not only do clusters grow by condensation of monomers, but cluster-cluster collisions also significantly contribute to the growth of the clusters. Our aim was to investigate the consistency of the growth rates of sub-3aEuro-nm clusters determined with different methods and the validity of the common approach to use them to estimate particle formation rates. We compared the growth rate corresponding to particle fluxes (FGR), the growth rate derived from the appearance times of clusters (AGR), and the growth rate calculated based on irreversible vapor condensation (CGR). We found that the relation between the different growth rates depends strongly on the external conditions and the properties of the model substance. The difference between the different growth rates was typically highest at the smallest, sub-2aEuro-nm sizes. FGR was generally lower than AGR and CGR; at the smallest sizes the difference was often very large, while at sizes larger than 2aEuro-nm the growth rates were closer to each other. AGR and CGR were in most cases close to each other at all sizes. The difference between the growth rates was generally lower in conditions where cluster concentrations were high, and evaporation and other losses were thus less significant. Furthermore, our results show that the conventional method used to determine particle formation rates from growth rates may give estimates far from the true values. Thus, care must be taken not only in how the growth rate is determined but also in how it is applied.
  •  
9.
  • Kontkanen, Jenni, et al. (författare)
  • What controls the observed size-dependency of the growth rates of sub-10 nm atmospheric particles?
  • 2022
  • Ingår i: Environmental Science. - : Royal Society of Chemistry (RSC). - 2634-3606. ; :2, s. 449-468
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation and growth of atmospheric particles involving sulfuric acid and organic vapors is estimated to have significant climate effects. To accurately represent this process in large-scale models, the correct interpretation of the observations on particle growth, especially below 10 nm, is essential. Here, we disentangle the factors governing the growth of sub-10 nm particles in the presence of sulfuric acid and organic vapors, using molecular-resolution cluster population simulations and chamber experiments. We find that observed particle growth rates are determined by the combined effects of (1) the concentrations and evaporation rates of the condensing vapors, (2) particle population dynamics, and (3) stochastic fluctuations, characteristic to initial nucleation. This leads to a different size-dependency of growth rate in the presence of sulfuric acid and/or organic vapors at different concentrations. Specifically, the activation type behavior, resulting in growth rate increasing with the particle size, is observed only at certain vapor concentrations. In our model simulations, cluster-cluster collisions enhance growth rate at high vapor concentrations and their importance is dictated by the cluster evaporation rates, which demonstrates the need for accurate evaporation rate data. Finally, we show that at sizes below ∼2.5-3.5 nm, stochastic effects can importantly contribute to particle population growth. Overall, our results suggest that interpreting particle growth observations with approaches neglecting population dynamics and stochastics, such as with single particle growth models, can lead to the wrong conclusions on the properties of condensing vapors and particle growth mechanisms.
  •  
10.
  • Kulmala, Markku, et al. (författare)
  • CO2-induced terrestrial climate feedback mechanism : From carbon sink to aerosol source and back
  • 2014
  • Ingår i: Boreal environment research. - 1239-6095 .- 1797-2469. ; 19, s. 122-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Feedbacks mechanisms are essential components of our climate system, as they either increase or decrease changes in climate-related quantities in the presence of external forcings. In this work, we provide the first quantitative estimate regarding the terrestrial climate feedback loop connecting the increasing atmospheric carbon dioxide concentration, changes in gross primary production (GPP) associated with the carbon uptake, organic aerosol formation in the atmosphere, and transfer of both diffuse and global radiation. Our approach was to combine process-level understanding with comprehensive, long-term field measurement data set collected from a boreal forest site in southern Finland. Our best estimate of the gain in GPP resulting from the feedback is 1.3 (range 1.02-1.5), which is larger than the gains of the few atmospheric chemistry-climate feedbacks estimated using large-scale models. Our analysis demonstrates the power of using comprehensive field measurements in investigating the complicated couplings between the biosphere and atmosphere on one hand, and the need for complementary approaches relying on the combination of field data, satellite observations model simulations on the other hand.
  •  
11.
  • Kulmala, Markku, et al. (författare)
  • Direct Observations of Atmospheric Aerosol Nucleation
  • 2013
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 339:6122, s. 943-946
  • Tidskriftsartikel (refereegranskat)abstract
    • Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub-2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation-more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.
  •  
12.
  • Kulmala, Markku, et al. (författare)
  • Measurement of the nucleation of atmospheric aerosol particles
  • 2012
  • Ingår i: Nature Protocols. - : Springer Science and Business Media LLC. - 1754-2189 .- 1750-2799. ; 7:9, s. 1651-1667
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of new atmospheric aerosol particles and their subsequent growth have been observed frequently at various locations all over the world. The atmospheric nucleation rate (or formation rate) and growth rate (GR) are key parameters to characterize the phenomenon. Recent progress in measurement techniques enables us to measure atmospheric nucleation at the size (mobility diameter) of 1.5 (+/- 0.4) nm. The detection limit has decreased from 3 to 1 nm within the past 10 years. In this protocol, we describe the procedures for identifying new-particle-formation (NPF) events, and for determining the nucleation, formation and growth rates during such events under atmospheric conditions. We describe the present instrumentation, best practices and other tools used to investigate atmospheric nucleation and NPF at a certain mobility diameter (1.5, 2.0 or 3.0 nm). The key instruments comprise devices capable of measuring the number concentration of the formed nanoparticles and their size, such as a suite of modern condensation particle counters (CPCs) and air ion spectrometers, and devices for characterizing the pre-existing particle number concentration distribution, such as a differential mobility particle sizer (DMPS). We also discuss the reliability of the methods used and requirements for proper measurements and data analysis. The time scale for realizing this procedure is 1 year.
  •  
13.
  • Lampilahti, Janne, et al. (författare)
  • Zeppelin-led study on the onset of new particle formation in the planetary boundary layer
  • 2021
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 21:16, s. 12649-12663
  • Tidskriftsartikel (refereegranskat)abstract
    • We compared observations of aerosol particle formation and growth in different parts of the planetary boundary layer at two different environments that have frequent new particle formation (NPF) events. In summer 2012 we had a campaign in Po Valley, Italy (urban background), and in spring 2013 a similar campaign took place in Hyytiälä, Finland (rural background). Our study consists of three case studies of airborne and ground-based measurements of ion and particle size distribution from ∼1 nm. The airborne measurements were performed using a Zeppelin inside the boundary layer up to 1000 m altitude. Our observations show the onset of regional NPF and the subsequent growth of the aerosol particles happening almost uniformly inside the mixed layer (ML) in both locations. However, in Hyytiälä we noticed local enhancement in the intensity of NPF caused by mesoscale boundary layer (BL) dynamics. Additionally, our observations indicate that in Hyytiälä NPF was probably also taking place above the ML. In Po Valley we observed NPF that was limited to a specific air mass.
  •  
14.
  • Lawler, Michael J., et al. (författare)
  • Unexpectedly acidic nanoparticles formed in dimethylamine-ammonia-sulfuric-acid nucleation experiments at CLOUD
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:21, s. 13601-13618
  • Tidskriftsartikel (refereegranskat)abstract
    • New particle formation driven by acid-base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10-30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models, which predict a higher dimethylaminium fraction when NH3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO2 to sulfate. These results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid-base pairs in particles as small as 10 nm.
  •  
15.
  • Lehtipalo, Katrianne, et al. (författare)
  • How Do Amines Affect the Growth of Recently Formed Aerosol Particles
  • 2013
  • Ingår i: NUCLEATION AND ATMOSPHERIC AEROSOLS. - : American Institute of Physics (AIP). - 9780735411524 ; , s. 295-297
  • Konferensbidrag (refereegranskat)abstract
    • Growth rates of recently born nanometer-scale particles were measured during the CLOUD experiments at CERN. Combining the data from several recently developed measurement techniques allowed us to follow the growth of the particles starting from molecules to molecular clusters and finally to climatically relevant particles. We studied the binary system with sulphuric acid and water, and the ternary systems with ammonia or dimethylamine added to the chamber, both in purely neutral situation, and with ionization from cosmic rays or the CERN particle beam.
  •  
16.
  • Lehtipalo, Katrianne, et al. (författare)
  • Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors
  • 2018
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 4:12
  • Tidskriftsartikel (refereegranskat)abstract
    • A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NOx) and sulfur oxides (SOx) from fossil fuel combustion, as well as ammonia (NH3) from livestock and fertilizers. Here, we show how NOx suppresses particle formation, while HOMs, sulfuric acid, and NH3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.
  •  
17.
  • Lehtipalo, Katrianne, et al. (författare)
  • The effect of acid-base clustering and ions on the growth of atmospheric nano-particles
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.
  •  
18.
  • Nie, Wei, et al. (författare)
  • NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere
  • 2023
  • Ingår i: Nature Communications. - Malmö : IVL Svenska Miljöinstitutet AB. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction between nitrogen monoxide (NO) and organic peroxy radicals (RO2) greatly impacts the formation of highly oxygenated organic molecules (HOM), the key precursors of secondary organic aerosols. It has been thought that HOM production can be significantly suppressed by NO even at low concentrations. Here, we perform dedicated experiments focusing on HOM formation from monoterpenes at low NO concentrations (0 – 82 pptv). We demonstrate that such low NO can enhance HOM production by modulating the RO2 loss and favoring the formation of alkoxy radicals that can continue to autoxidize through isomerization.These insights suggest that HOM yields from typical boreal forest emissions can vary between 2.5%-6.5%, and HOM formation will not be completely inhibited even at high NO concentrations. Our findings challenge the notion that NO monotonically reduces HOM yields by extending the knowledge of RO2-NO interactions to the low-NO regime. This represents a major advance towards an accurate assessment of HOM budgets, especially in low-NO environments, which prevails in the preindustrial atmosphere, pristine areas, and the upper boundary layer.
  •  
19.
  • Olenius, Tinja, et al. (författare)
  • Growth rates of atmospheric molecular clusters based on appearance times and collision-evaporation fluxes : Growth by monomers
  • 2014
  • Ingår i: Journal of Aerosol Science. - : Elsevier BV. - 0021-8502 .- 1879-1964. ; 78, s. 55-70
  • Tidskriftsartikel (refereegranskat)abstract
    • Formation of secondary atmospheric aerosol particles starts with the formation and growth of small molecular clusters. The probability that freshly formed clusters reach larger sizes depends on the rate at which they grow with respect to the rate at which they are lost on pre-existing surfaces. At present, advances in condensation particle counter and mass spectrometer techniques enable the observation of cluster growth via time evolution of size resolved cluster concentrations, and recent studies have utilized measured concentrations to deduce growth rates from the appearance times of different cluster sizes. In this work, we use a dynamic model to simulate the time development of a population of clusters of up to similar to 2 nm in mass diameter, and examine the relation of the growth rates determined from the appearance times to the growth rates calculated from the molecular fluxes between the clusters. This study concentrates on a simple model substance where the clusters grow only by monomer additions and the growth involves a single free energy barrier. Each cluster size defined by the number of molecules in the cluster is explicitly treated instead of dividing the clusters into size classes. Effects of finite size resolution and cluster cluster collisions will be discussed in future work. We find that the growth rates determined with the two different approaches may differ significantly, both quantitatively and qualitatively, for the smallest clusters with the highest evaporation rates. The relative difference decreases with increasing cluster size and decreasing evaporation rate. In addition to cluster size, the difference depends on ambient conditions including external losses and time profile of the monomer concentration. Thus a quantitative comparison requires information not only on the substance, but also on the external conditions. We also show that the size of a critical cluster, corresponding to the maximum of an energy barrier in cluster formation, cannot be inferred from the size-dependent growth rates in realistic conditions.
  •  
20.
  • Thakur, Roseline C., et al. (författare)
  • An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom
  • 2022
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:9, s. 6365-6391
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies have investigated new particle formation (NPF) events from various sites ranging from pristine locations, including forest sites, to urban areas. However, there is still a dearth of studies investigating NPF processes and subsequent aerosol growth in coastal yet semi-urban sites, where the tropospheric layer is a concoction of biogenic and anthropogenic gases and particles. The investigation of factors leading to NPF becomes extremely complex due to the highly dynamic meteorological conditions at the coastline especially when combined with both continental and oceanic weather conditions. Herein, we engage in a comprehensive study of particle number size distributions and aerosol-forming precursor vapors at the coastal semi-urban site in Helsinki, Finland. The measurement period, 25 June-18 August 2019, was timed with the recurring cyanobacterial summer bloom in the Baltic Sea region and coastal regions of Finland. Our study recorded several regional/local NPF and aerosol burst events during this period. Although the overall anthropogenic influence on sulfuric acid (SA) concentrations was low during the measurement period, we observed that the regional or local NPF events, characterized by SA concentrations on the order of 10(7) molec. cm(-3), occurred mostly when the air mass traveled over the land areas. Interestingly, when the air mass traveled over the Baltic Sea, an area enriched with algae and cyanobacterial blooms, high iodic acid (IA) concentration coincided with an aerosol burst or a spike event at the measurement site. Further, SA-rich bursts were seen when the air mass traveled over the Gulf of Bothnia, enriched with cyanobacterial blooms. The two most important factors affecting aerosol precursor vapor concentrations, and thus the aerosol formation, were speculated to be (1) the type of phytoplankton species and intensity of bloom present in the coastal regions of Finland and the Baltic Sea and (2) the wind direction. During the events, most of the growth of sub-3 nm particles was probably due to SA, rather than IA or methane sulfonic acid (MSA); however much of the particle growth remained unexplained indicative of the strong role of organics in the growth of particles, especially in the 3-7 nm particle size range. Further studies are needed to explore the role of organics in NPF events and the potential influence of cyanobacterial blooms in coastal locations.
  •  
21.
  • Tröstl, Jasmin, et al. (författare)
  • The role of low-volatility organic compounds in initial particle growth in the atmosphere
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 533:7604, s. 527-531
  • Tidskriftsartikel (refereegranskat)abstract
    • About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday(1). Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres(2,3). In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles(4), thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth(5,6), leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer(7-10). Although recent studies(11-13) predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon(2), and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Kohler theory)(2,14), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown(15) that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10(-0.5) micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.
  •  
22.
  • Wagner, Robert, et al. (författare)
  • The role of ions in new particle formation in the CLOUD chamber
  • 2017
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:24, s. 15181-15197
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of secondary particles in the atmosphere accounts for more than half of global cloud condensation nuclei. Experiments at the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber have underlined the importance of ions for new particle formation, but quantifying their effect in the atmosphere remains challenging. By using a novel instrument setup consisting of two nanoparticle counters, one of them equipped with an ion filter, we were able to further investigate the ion-related mechanisms of new particle formation. In autumn 2015, we carried out experiments at CLOUD on four systems of different chemical compositions involving monoterpenes, sulfuric acid, nitrogen oxides, and ammonia. We measured the influence of ions on the nucleation rates under precisely controlled and atmospherically relevant conditions. Our results indicate that ions enhance the nucleation process when the charge is necessary to stabilize newly formed clusters, i.e., in conditions in which neutral clusters are unstable. For charged clusters that were formed by ion-induced nucleation, we were able to measure, for the first time, their progressive neutralization due to recombination with oppositely charged ions. A large fraction of the clusters carried a charge at 1.5 nm diameter. However, depending on particle growth rates and ion concentrations, charged clusters were largely neutralized by ion-ion recombination before they grew to 2.5 nm. At this size, more than 90% of particles were neutral. In other words, particles may originate from ion-induced nucleation, although they are neutral upon detection at diameters larger than 2.5 nm. Observations at Hyytiala, Finland, showed lower ion concentrations and a lower contribution of ion-induced nucleation than measured at CLOUD under similar conditions. Although this can be partly explained by the observation that ion-induced fractions decrease towards lower ion concentrations, further investigations are needed to resolve the origin of the discrepancy.
  •  
23.
  • Wang, Mingyi, et al. (författare)
  • Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 581:7807, s. 184-
  • Tidskriftsartikel (refereegranskat)abstract
    • A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms(4,5).
  •  
24.
  • Wang, Mingyi, et al. (författare)
  • Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 605:7910, s. 483-489
  • Tidskriftsartikel (refereegranskat)abstract
    • New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN). However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region. Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles—comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO3–H2SO4–NH3 nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere.
  •  
25.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 25
Typ av publikation
tidskriftsartikel (22)
annan publikation (1)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (24)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Lehtipalo, Katrianne (25)
Kulmala, Markku (22)
Riipinen, Ilona (15)
Duplissy, Jonathan (13)
Kirkby, Jasper (13)
Hansel, Armin (12)
visa fler...
Simon, Mario (12)
Worsnop, Douglas R. (12)
Bianchi, Federico (11)
Donahue, Neil M. (11)
Jokinen, Tuija (11)
Nieminen, Tuomo (11)
Tome, Antonio (11)
Curtius, Joachim (11)
Baltensperger, Urs (11)
Amorim, Antonio (10)
Flagan, Richard C. (10)
Petäjä, Tuukka (10)
Winkler, Paul M. (10)
Schobesberger, Siegf ... (9)
Kangasluoma, Juha (9)
Onnela, Antti (9)
Sarnela, Nina (9)
Kerminen, Veli-Matti (9)
Kontkanen, Jenni (9)
Sipilä, Mikko (9)
Dada, Lubna (9)
Mathot, Serge (8)
Manninen, Hanna E. (8)
Wagner, Robert (7)
Dommen, Josef (7)
Guida, Roberto (7)
Heinritzi, Martin (7)
Junninen, Heikki (7)
Laaksonen, Ari (7)
Makhmutov, Vladimir (7)
Virtanen, Annele (7)
Stolzenburg, Dominik (7)
Franchin, Alessandro (6)
Hakala, Jani (6)
Petaja, Tuukka (6)
Schallhart, Simon (6)
Sipila, Mikko (6)
Wimmer, Daniela (6)
Ye, Penglin (6)
Carslaw, Kenneth S. (6)
Smith, James N. (6)
Quéléver, Lauriane L ... (6)
Yan, Chao (6)
Volkamer, Rainer (6)
visa färre...
Lärosäte
Stockholms universitet (23)
Lunds universitet (3)
Göteborgs universitet (1)
Sveriges Lantbruksuniversitet (1)
IVL Svenska Miljöinstitutet (1)
Språk
Engelska (25)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (25)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy