SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leidermark Daniel Ph.D. 1980 ) "

Sökning: WFRF:(Leidermark Daniel Ph.D. 1980 )

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Håkan, 1970- (författare)
  • A Co-Simulation Approach for Hydraulic Percussion Units
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This Licentiate of Engineering thesis concerns modelling and simulation of hydraulic percussion units. These units are often found in equipment for breaking or drilling in rock and concrete, and are also often driven by oil hydraulics, in which complex fluid-structure couplings are essential for their operation.Current methodologies used today when developing hydraulic percussion units are based on decoupled analyses, which are not correctly capturing the important coupled mechanisms. Hence, an efficient method for coupled simulations is of high importance, since these mechanisms are critical for the function of these units. Therefore, a co-simulation approach between a 1D system simulation model representing the fluid system and a structural 3D FE-model is proposed.This approach is presented in detail, implemented for two well-known simulation tools and evaluated for a simple but relevant model. The Hopsan simulation tool was used for the fluid system and the FE-simulation software LS-DYNA was used for the structural mechanics simulation. The co-simulation interface was implemented using the Functional Mock-up Interface-standard.The approach was further developed to also incorporate multiple components for coupled simulations. This was considered necessary when models for the real application are to be developed. The use of two components for co-simulation was successfully evaluated for two models, one using the simple rigid body representation, and a second where linear elastic representations of the structural material were implemented.An experimental validation of the co-simulation approach applied to an existing hydraulic hammer was performed. Experiments on the hydraulic hammer were performed using an in-house test rig, and responses were registered at four different running conditions. The co-simulation model was developed using the same approach as before. The corresponding running conditions were simulated and the responses were successfully validated against the experiments. A parameter study was also performed involving two design parameters with the objective to evaluate the effects of a parameter change.This thesis consists of two parts, where Part I gives an introduction to the application, the simulation method and the implementation, while Part II consists of three papers from this project.
  •  
2.
  • Busse, Christian, 1989- (författare)
  • Aspects of Crack Growth in Single-Crystal Nickel-Base Superalloys
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This Licentiate of Engineering thesis is a product of the results generated in the research project KME-702, which comprises modelling, microstructure investigations and material testing of cast nickel-base superalloys.The main objective of this work is to model the fatigue crack propagation behaviour in single-crystal nickel-base superalloys. To achieve this, the influence of the crystal orientations on the cracking behaviour is assessed. The results show that the crystal orientation is strongly affecting the material response and must be accounted for. Furthermore, a linear elastic crack driving force parameter suitable for describing crystallographic cracking has been developed. This parameter is based on resolved anisotropic stress intensity factors and is able to predict the correct crystallographic cracking plane after a transition from a Mode I crack. Finally, a method to account for inelastic deformations in a linear elastic fracture mechanics context was investigated. A residual stress field is extracted from an uncracked finite-element model with a perfectly plastic material model and superimposed on the stress field from the cracked model with a linear elastic material model to account for the inelastic deformations during the determination of the crack driving force. The modelling work is validated by material testing on two different specimen geometries at different temperatures.This Licentiate of Engineering thesis consists of two parts, where Part I gives an introduction and background to the research area, while Part II consists of three papers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy