SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leitner Sonja) "

Sökning: WFRF:(Leitner Sonja)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abata, E., et al. (författare)
  • Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV
  • 2010
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier. - 0168-9002 .- 1872-9576 .- 0167-5087. ; 621:1-3, s. 134-150
  • Tidskriftsartikel (refereegranskat)abstract
    • A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit. (C) 2010 Published by Elsevier B.V.
  •  
2.
  • Merbold, Lutz, et al. (författare)
  • Opportunities for an African greenhouse gas observation system
  • 2021
  • Ingår i: Regional Environmental Change. - : Springer Science and Business Media LLC. - 1436-3798 .- 1436-378X. ; 21:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Global population projections foresee the biggest increase to occur in Africa with most of the available uncultivated land to ensure food security remaining on the continent. Simultaneously, greenhouse gas emissions are expected to rise due to ongoing land use change, industrialisation, and transport amongst other reasons with Africa becoming a major emitter of greenhouse gases globally. However, distinct knowledge on greenhouse gas emissions sources and sinks as well as their variability remains largely unknown caused by its vast size and diversity and an according lack of observations across the continent. Thus, an environmental research infrastructure—as being setup in other regions—is more needed than ever. Here, we present the results of a design study that developed a blueprint for establishing such an environmental research infrastructure in Africa. The blueprint comprises an inventory of already existing observations, the spatial disaggregation of locations that will enable to reduce the uncertainty in climate forcing’s in Africa and globally as well as an overall estimated cost for such an endeavour of about 550 M€ over the next 30 years. We further highlight the importance of the development of an e-infrastructure, the necessity for capacity development and the inclusion of all stakeholders to ensure African ownership.
  •  
3.
  • Wachiye, Sheila, et al. (författare)
  • Soil greenhouse gas emissions from a sisal chronosequence in Kenya
  • 2021
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 307
  • Tidskriftsartikel (refereegranskat)abstract
    • Sisal (Agave sisalana) is a climate-resilient crop grown on large-scale farms in semi-arid areas. However, no studies have investigated soil greenhouse gas (GHGs: CO2, N2O and CH4) fluxes from these plantations and how they relate to other land cover types. We examined GHG fluxes (Fs) in a sisal chronosequence at Teita Sisal Estatein southern Kenya. The effects of stand age on Fs were examined using static GHG chambers and gas chromatography for a period of one year in seven stands: young stands aged 1–3 years, mature stands aged 7–8 years, and old stands aged 13–14 years. Adjacent bushland served as a control site representing the surrounding land use type. Mean CO₂ fluxes were highest in the oldest stand (56 ± 3 mg C m-2 h-1) and lowest in the 8-year old stand (38 ± 3 mg C m-2 h-1), which we attribute to difference in root respiration between the stand. All stands had 13–28% higher CO₂ fluxes than bushland (32 ± 3 mg C m-2 h-1). CO2 fluxes in the wet season were about 70% higher than dry season across all sites. They were influenced by soil water content (WS) and vegetation phenology. Mean N2O fluxes were very low (<5 μg N m-2 h-1) in all sites due to low soil nitrogen (N) content. About 89% of CH4 fluxes were below the detection limit (LOD ± 0.02 mg C m-2 h-1). Our results imply that sisalplantations have higher soil CO2 emissions than the surrounding land use type, and the seasonal emissions were largely driven by WS and the vegetation status. Methane and nitrous oxide are of minor importance. Thus, soil GHG fluxes from sisal plantations are a minor contributor to agricultural GHG emissions in Kenya.
  •  
4.
  • Wachiye, Sheila, et al. (författare)
  • Soil greenhouse gas emissions under different land-use types in savanna ecosystems of Kenya
  • 2020
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 17:8, s. 2149-2167
  • Tidskriftsartikel (refereegranskat)abstract
    • Field measurement data on greenhouse gas (GHG) emissions are still scarce for many land-use types in Africa, causing a high level of uncertainty in GHG budgets. To address this gap, we present in situ measurements of carbon dioxide (CO2 ), nitrous oxide (N2 O), and methane (CH4) emissions from the lowlands of southern Kenya. We conducted eight chamber measurement campaigns on gas exchange from four dominant land-use types (LUTs) comprising (1) cropland, (2) bushland, (3) grazing land, and (4) conservation land between 29 November 2017 and 3 November 2018, accounting for regional seasonality (wet and dry seasons and transitions periods). Mean CO2 emissions for the whole observation period were the highest by a significant margin (p value<0.05) in the conservation land (75±6 mgCO2 Cm-2 h-1) compared to the three other sites, which ranged from 45±4 mgCO2 Cm-2 h-1 (bushland) to 50±5 mgCO2 Cm-2 h-1 (grazing land). Furthermore, CO2 emissions varied between seasons, with significantly higher emissions in the wet season than the dry season. Mean N2 O emissions were highest in cropland (2:7±0:6 μgN2 O-Nm-2 h-1) and lowest in bushland (1:2± 0:4 μgN2 O-Nm-2 h-1) but did not vary with season. In fact, N2 O emissions were very low both in the wet and dry seasons, with slightly elevated values during the early days of the wet seasons in all LUTs. On the other hand, CH4 emissions did not show any significant differences across LUTs and seasons. Most CH4 fluxes were below the limit of detection (LOD, ±0:03 mgCH4-Cm-2 h-1). We attributed the difference in soil CO2 emissions between the four sites to soil C content, which differed between the sites and was highest in the conservation land. In addition, CO2 and N2 O emissions positively correlated with soil moisture, thus an increase in soil moisture led to an increase in emissions. Furthermore, vegetation cover explained the seasonal variation in soil CO2 emissions as depicted by a strong positive correlation between the normalized difference vegetation index (NDVI) and CO2 emissions, most likely because, with more green (active) vegetation cover, higher CO2 emissions occur due to enhanced root respiration compared to drier periods. Soil temperature did not show a clear correlation with either CO2 or N2 O emissions, which is likely due to the low variability in soil temperature between seasons and sites. Based on our results, soil C, active vegetation cover, and soil moisture are key drivers of soil GHG emissions in all the tested LUTs in southern Kenya. Our results are within the range of previous GHG flux measurements from soils from various LUTs in other parts of Kenya and contribute to more accurate baseline GHG emission estimates from Africa, which are key to reducing uncertainties in global GHG budgets as well as for informing policymakers when discussing low-emission development strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy