SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leong Aaron) "

Sökning: WFRF:(Leong Aaron)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tobias, Deirdre K, et al. (författare)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • Ingår i: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
2.
  • Wessel, Jennifer, et al. (författare)
  • Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF = 1.4%) with lower FG (beta = -0.09 +/- 0.01 mmol l(-1), P = 3.4 x 10(-12)), T2D risk (OR[95% CI] = 0.86[0.76-0.96], P = 0.010), early insulin secretion (beta = -0.07 +/- 0.035 pmol(insulin) mmol(glucose)(-1), P = 0.048), but higher 2-h glucose (beta = 0.16 +/- 0.05 mmol l(-1), P = 4.3 x 10(-4)). We identify a gene-based association with FG at G6PC2 (p(SKAT) = 6.8 x 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF = 20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (beta = 0.02 +/- 0.004 mmol l(-1), P = 1.3 x 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
  •  
3.
  • Hari-Gupta, Yukti, et al. (författare)
  • Myosin VI regulates the spatial organisation of mammalian transcription initiation
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • During transcription, RNA Polymerase II (RNAPII) is spatially organised within the nucleus into clusters that correlate with transcription activity. While this is a hallmark of genome regulation in mammalian cells, the mechanisms concerning the assembly, organisation and stability remain unknown. Here, we have used combination of single molecule imaging and genomic approaches to explore the role of nuclear myosin VI (MVI) in the nanoscale organisation of RNAPII. We reveal that MVI in the nucleus acts as the molecular anchor that holds RNAPII in high density clusters. Perturbation of MVI leads to the disruption of RNAPII localisation, chromatin organisation and subsequently a decrease in gene expression. Overall, we uncover the fundamental role of MVI in the spatial regulation of gene expression.
  •  
4.
  •  
5.
  • Mahajan, Anubha, et al. (författare)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Tidskriftsartikel (refereegranskat)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
6.
  • Raghavan, Sridharan, et al. (författare)
  • Interaction of diabetes genetic risk and successful lifestyle modification in the Diabetes Prevention Programme
  • 2021
  • Ingår i: Diabetes, Obesity and Metabolism. - : Wiley. - 1462-8902 .- 1463-1326. ; 23:4, s. 1030-1040
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: To test whether diabetes genetic risk modifies the association of successful lifestyle changes with incident diabetes. Materials and methods: We studied 823 individuals randomized to the intensive lifestyle intervention (ILS) arm of the Diabetes Prevention Programme who were diabetes-free 1 year after enrolment. We tested additive and multiplicative interactions of a 67-variant diabetes genetic risk score (GRS) with achievement of three ILS goals at 1 year (≥7% weight loss, ≥150 min/wk of moderate leisure-time physical activity, and/or a goal for self-reported total fat intake) on the primary outcome of incident diabetes over 3 years of follow-up. Results: A lower GRS and achieving each or all three ILS goals were each associated with lower incidence of diabetes (all P < 0.05). Additive interactions were significant between the GRS and achievement of the weight loss goal (P < 0.001), physical activity goal (P = 0.02), and all three ILS goals (P < 0.001) for diabetes risk. Achievement of all three ILS goals was associated with 1.8 (95% CI 0.3, 3.4), 3.1 (95% CI 1.5, 4.7), and 3.9 (95% CI 1.6, 6.2) fewer diabetes cases/100-person-years in the first, second and third GRS tertiles (P < 0.001 for trend). Multiplicative interactions between the GRS and ILS goal achievement were significant for the diet goal (P < 0.001), but not for weight loss (P = 0.18) or physical activity (P = 0.62) goals. Conclusions: Genetic risk may identify high-risk subgroups for whom successful lifestyle modification is associated with greater absolute reduction in the risk of incident diabetes.
  •  
7.
  • Wheeler, Eleanor, et al. (författare)
  • Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations : A transethnic genome-wide meta-analysis
  • 2017
  • Ingår i: PLoS Medicine. - : PUBLIC LIBRARY SCIENCE. - 1549-1277 .- 1549-1676. ; 14:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes.Methods & findings: Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95% CI 1.04-1.06, per HbA1c-raising allele, p = 3 x 10-29); whereas GS-E was not (OR = 1.00, 95% CI 0.99-1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI 0.66-0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38-0.97) in homozygous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI0.55-0.74) of African American adults with T2Dto remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants.Conclusions: As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (6)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (7)
Författare/redaktör
Loos, Ruth J F (4)
Rich, Stephen S (4)
Franks, Paul W. (3)
Wareham, Nicholas J. (3)
Kuusisto, Johanna (3)
Laakso, Markku (3)
visa fler...
McCarthy, Mark I (3)
Hansen, Torben (3)
Langenberg, Claudia (3)
Boehnke, Michael (3)
Scott, Robert A (3)
Rotter, Jerome I. (3)
Hattersley, Andrew T (3)
Fornage, Myriam (3)
Liu, Yongmei (3)
Groop, Leif (2)
Soranzo, Nicole (2)
Rudan, Igor (2)
Deloukas, Panos (2)
Stancáková, Alena (2)
Bork-Jensen, Jette (2)
Linneberg, Allan (2)
Grarup, Niels (2)
Pedersen, Oluf (2)
Sennblad, Bengt (2)
Motala, Ayesha A (2)
Ma, Ronald C W (2)
Ridker, Paul M. (2)
Chasman, Daniel I. (2)
Chu, Audrey Y (2)
Hamsten, Anders (2)
Mohlke, Karen L (2)
Jorgensen, Torben (2)
Saleheen, Danish (2)
Tuomilehto, Jaakko (2)
Gieger, Christian (2)
Peters, Annette (2)
Strauch, Konstantin (2)
Barroso, Ines (2)
Mahajan, Anubha (2)
Froguel, Philippe (2)
Gloyn, Anna L (2)
Palmer, Colin N. A. (2)
Meitinger, Thomas (2)
McKean-Cowdin, Rober ... (2)
Harris, Tamara B (2)
Psaty, Bruce M (2)
Hayward, Caroline (2)
Zeggini, Eleftheria (2)
Polasek, Ozren (2)
visa färre...
Lärosäte
Lunds universitet (6)
Uppsala universitet (3)
Stockholms universitet (3)
Karolinska Institutet (3)
Umeå universitet (2)
Linköpings universitet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (6)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy