SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lhuillier M) "

Search: WFRF:(Lhuillier M)

  • Result 1-50 of 122
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Adrian-Martinez, S., et al. (author)
  • A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007
  • 2013
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :6
  • Journal article (peer-reviewed)abstract
    • We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.
  •  
2.
  • Evans, P. A., et al. (author)
  • Swift Follow-up Observations of Candidate Gravitational-wave Transient Events
  • 2012
  • In: The Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 203:2
  • Journal article (peer-reviewed)abstract
    • We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors (within less than 10 minutes) and their candidate sky locations were observed by the Swift observatory (within 12 hr). Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge." With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime, multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.
  •  
3.
  • Aasi, J., et al. (author)
  • Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network
  • 2013
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 88:6
  • Journal article (peer-reviewed)abstract
    • Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a "blind injection'' where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1M(circle dot)-25M(circle dot) and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.
  •  
4.
  • Aasi, J., et al. (author)
  • Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009-2010
  • 2013
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 87:2
  • Journal article (peer-reviewed)abstract
    • We report a search for gravitational waves from the inspiral, merger and ringdown of binary black holes (BBH) with total mass between 25 and 100 solar masses, in data taken at the LIGO and Virgo observatories between July 7, 2009 and October 20, 2010. The maximum sensitive distance of the detectors over this period for a (20, 20)M-circle dot coalescence was 300 Mpc. No gravitational wave signals were found. We thus report upper limits on the astrophysical coalescence rates of BBH as a function of the component masses for nonspinning components, and also evaluate the dependence of the search sensitivity on component spins aligned with the orbital angular momentum. We find an upper limit at 90% confidence on the coalescence rate of BBH with nonspinning components of mass between 19 and 28M(circle dot) of 3:3 x 10(-7) mergers Mpc(-3) yr(-1).
  •  
5.
  • Aasi, J., et al. (author)
  • The characterization of Virgo data and its impact on gravitational-wave searches
  • 2012
  • In: Classical and Quantum Gravity. - : IOP Publishing. - 1361-6382 .- 0264-9381. ; 29:15
  • Journal article (peer-reviewed)abstract
    • Between 2007 and 2010 Virgo collected data in coincidence with the LIGO and GEO gravitational-wave (GW) detectors. These data have been searched for GWs emitted by cataclysmic phenomena in the universe, by non-axisymmetric rotating neutron stars or from a stochastic background in the frequency band of the detectors. The sensitivity of GW searches is limited by noise produced by the detector or its environment. It is therefore crucial to characterize the various noise sources in a GW detector. This paper reviews the Virgo detector noise sources, noise propagation, and conversion mechanisms which were identified in the three first Virgo observing runs. In many cases, these investigations allowed us to mitigate noise sources in the detector, or to selectively flag noise events and discard them from the data. We present examples from the joint LIGO-GEO-Virgo GW searches to show how well noise transients and narrow spectral lines have been identified and excluded from the Virgo data. We also discuss how detector characterization can improve the astrophysical reach of GW searches.
  •  
6.
  • Aasi, J., et al. (author)
  • Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data
  • 2013
  • In: Physical Review D (Particles, Fields, Gravitation and Cosmology). - 1550-2368. ; 87:4
  • Journal article (peer-reviewed)abstract
    • This paper presents results of an all-sky search for periodic gravitational waves in the frequency range [50, 1190] Hz and with frequency derivative range of similar to[-20, 1.1] x 10(-10) Hz s(-1) for the fifth LIGO science run (S5). The search uses a noncoherent Hough-transform method to combine the information from coherent searches on time scales of about one day. Because these searches are very computationally intensive, they have been carried out with the Einstein@Home volunteer distributed computing project. Postprocessing identifies eight candidate signals; deeper follow-up studies rule them out. Hence, since no gravitational wave signals have been found, we report upper limits on the intrinsic gravitational wave strain amplitude h(0). For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h(0) greater than 7.6 x 10(-25) at a 90% confidence level. This search is about a factor 3 more sensitive than the previous Einstein@Home search of early S5 LIGO data.
  •  
7.
  •  
8.
  • Abdalla, E., et al. (author)
  • Cosmology intertwined : A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies
  • 2022
  • In: Journal of High Energy Astrophysics. - : Elsevier BV. - 2214-4048 .- 2214-4056. ; 34, s. 49-211
  • Journal article (peer-reviewed)abstract
    • The standard Λ Cold Dark Matter (ΛCDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H0, the σ8–S8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements. After showing the H0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade's experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density Ωm, and the amplitude or rate of the growth of structure (σ8,fσ8). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H0–S8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions. 
  •  
9.
  • Alcorn, J, et al. (author)
  • Basic instrumentation for Hall A at Jefferson Lab
  • 2004
  • In: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 522:3, s. 294-346
  • Journal article (peer-reviewed)abstract
    • The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electro-and photo-induced reactions at very high luminosity and good momentum and angular resolution for at least one of the reaction products. The central components of Hall A are two identical high resolution spectrometers, which allow the vertical drift chambers in the focal plane to provide a momentum resolution of better than 2 x 10(-4). A variety of Cherenkov counters, scintillators and lead-glass calorimeters provide excellent particle identification. The facility has been operated successfully at a luminosity well in excess of 10(38) CM-2 s(-1). The research program is aimed at a variety of subjects, including nucleon structure functions, nucleon form factors and properties of the nuclear medium. (C) 2003 Elsevier B.V. All rights reserved.
  •  
10.
  • Fages, A., et al. (author)
  • Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series
  • 2019
  • In: Cell. - : Elsevier BV. - 0092-8674. ; 177:6
  • Journal article (peer-reviewed)abstract
    • Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (>= 1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modem legacy of past equestrian civilisations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modem breeding impacted genetic diversity more dramatically than the previous millennia of human management.
  •  
11.
  • Puckett, A. J. R., et al. (author)
  • Final analysis of proton form factor ratio data at Q(2)=4.0, 4.8, and 5.6 GeV2
  • 2012
  • In: Physical Review C (Nuclear Physics). - 0556-2813. ; 85:4
  • Journal article (peer-reviewed)abstract
    • Precise measurements of the proton electromagnetic form factor ratio R = mu(p)G(E)(p)/G(M)(p) using the polarization transfer method at Jefferson Lab have revolutionized the understanding of nucleon structure by revealing the strong decrease of R with momentum transfer Q(2) for Q(2) greater than or similar to 1 GeV2, in strong disagreement with previous extractions of R from cross-section measurements. In particular, the polarization transfer results have exposed the limits of applicability of the one-photon-exchange approximation and highlighted the role of quark orbital angular momentum in the nucleon structure. The GEp-II experiment in Jefferson Lab's Hall A measured R at four Q(2) values in the range 3.5 GeV2 <= Q(2) <= 5.6 GeV2. A possible discrepancy between the originally published GEp-II results and more recent measurements at higher Q(2) motivated a new analysis of the GEp-II data. This article presents the final results of the GEp-II experiment, including details of the new analysis, an expanded description of the apparatus, and an overview of theoretical progress since the original publication. The key result of the final analysis is a systematic increase in the results for R, improving the consistency of the polarization transfer data in the high-Q(2) region. This increase is the result of an improved selection of elastic events which largely removes the systematic effect of the inelastic contamination, underestimated by the original analysis.
  •  
12.
  • Arnold, C. L., et al. (author)
  • The ELI-ALPS secondary sources : A getaway to scientific excellence
  • 2013
  • In: 2013 Conference on Lasers and Electro-Optics, CLEO 2013. - 9781557529725 ; 2013
  • Conference paper (peer-reviewed)abstract
    • The essence of ELI-ALPS, the laser driven secondary sources ranging from X-ray and X-UV to THz with duration as short as tens of attoseconds, are designed to be available for users from 2016.
  •  
13.
  • Bastard, P, et al. (author)
  • Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs
  • 2022
  • In: Science immunology. - : American Association for the Advancement of Science (AAAS). - 2470-9468. ; 78:7490, s. eabp8966-
  • Journal article (peer-reviewed)abstract
    • Life-threatening ‘breakthrough’ cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS-CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals (age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto-Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-α2 and IFN-ω, while two neutralized IFN-ω only. No patient neutralized IFN-β. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population.
  •  
14.
  • Greer, M., et al. (author)
  • Lung transplantation after allogeneic stem cell transplantation: a pan-European experience
  • 2018
  • In: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 51:2
  • Journal article (peer-reviewed)abstract
    • Late-onset noninfectious pulmonary complications (LONIPCs) affect 6% of allogeneic stem cell transplantation (SCT) recipients within 5 years, conferring subsequent 5-year survival of 50%. Lung transplantation is rarely performed in this setting due to concomitant extrapulmonary morbidity, excessive immunosuppression and concerns about recurring malignancy being considered contraindications. This study assesses survival in highly selected patients undergoing lung transplantation for LONIPCs after SCT. SCT patients undergoing lung transplantation at 20 European centres between 1996 and 2014 were included. Clinical data pre- and post-lung transplantation were reviewed. Propensity score-matched controls were generated from the Eurotransplant and Scandiatransplant registries. Kaplan-Meier survival analysis and Cox proportional hazard regression models evaluating predictors of graft loss were performed. Graft survival at 1, 3 and 5 years of 84%, 72% and 67%, respectively, among the 105 SCT patients proved comparable to controls (p=0.75). Sepsis accounted for 15 out of 37 deaths (41%), with prior mechanical ventilation (HR 6.9, 95% CI 1.0-46.7; p<0.001) the leading risk factor. No SCT-specific risk factors were identified. Recurring malignancy occurred in four patients (4%). Lung transplantation <2 years post-SCT increased all-cause 1-year mortality (HR 7.5, 95% CI 2.3-23.8; p=0.001). Lung transplantation outcomes following SCT were comparable to other end-stage diseases. Lung transplantation should be considered feasible in selected candidates. No SCT-specific factors influencing outcome were identified within this carefully selected patient cohort.
  •  
15.
  • Alexandridi, C., et al. (author)
  • Attosecond photoionization dynamics in the vicinity of the Cooper minima in argon
  • 2021
  • In: Physical Review Research. - 2643-1564. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Using a spectrally resolved electron interferometry technique, we measure photoionization time delays between the 3s and 3p subshells of argon over a large 34-eV energy range covering the Cooper minima in both subshells. The observed strong variations of the 3s−3p delay difference, including a sign change, are well reproduced by theoretical calculations using the two-photon two-color random-phase approximation with exchange. Strong shake-up channels lead to photoelectrons spectrally overlapping with those emitted from the 3s subshell. These channels need to be included in our analysis to reproduce the experimental data. Our measurements provide a benchmark for multielectronic theoretical models aiming at an accurate description of interchannel correlation.
  •  
16.
  • Busto, D., et al. (author)
  • Time-frequency representation of autoionization dynamics in helium
  • 2018
  • In: Journal of Physics B-Atomic Molecular and Optical Physics. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 51:4
  • Journal article (peer-reviewed)abstract
    • Autoionization, which results from the interference between direct photoionization and photoexcitation to a discrete state decaying to the continuum by configuration interaction, is a well known example of the important role of electron correlation in light-matter interaction. Information on this process can be obtained by studying the spectral, or equivalently, temporal complex amplitude of the ionized electron wave packet. Using an energy-resolved interferometric technique, we measure the spectral amplitude and phase of autoionized wave packets emitted via the sp2+ and sp3(+) resonances in helium. These measurements allow us to reconstruct the corresponding temporal profiles by Fourier transform. In addition, applying various time-frequency representations, we observe the build-up of the wave packets in the continuum, monitor the instantaneous frequencies emitted at any time and disentangle the dynamics of the direct and resonant ionization channels.
  •  
17.
  • Heyl, C. M., et al. (author)
  • Noncollinear optical gating - A method for intra-cavity single attosecond pulse generation?
  • 2019
  • In: Proceedings 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CLEO/Europe-EQEC 2015. - 9781467374750
  • Conference paper (peer-reviewed)abstract
    • The process of high-order harmonic generation requires laser intensities around 1014 W/cm2, most easily reached with laser pulses of high energy, thus implicitly limiting the repetition rate of attosecond sources. A route towards multi-MHz attosecond sources relies on HHG inside a passive enhancement cavity [1]. Although successfully demonstrated for attosecond pulse trains, the generation of single attosecond pulses (SAPs) inside a cavity remains an unsolved challenge, mainly limited by dispersion management and out-coupling problems. We recently proposed a new gating concept for SAP generation [2], noncollinear optical gating (NOG) which has the potential to facilitate SAP gating and efficient out-coupling at once. Similar to the recently introduced attosecond lighthouse [3] NOG employs attosecond angular streaking [4] and combines this concept with noncollinear HHG, proposed earlier [5] as out-coupling method for intra cavity HHG.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  • Sansone, G., et al. (author)
  • Attosecond excitation of electron wavepackets
  • 2008
  • In: Quantum Electronics and Laser Science Conference, QELS 2008. - 9781557528599
  • Conference paper (peer-reviewed)abstract
    • We present experiments, supported by time-dependent Schrödinger simulations, on the dynamics of Helium bound states after an attosecond excitation in the presence of a strong infrared laser field.
  •  
22.
  • Sansone, G., et al. (author)
  • Electron localization following attosecond molecular photoionization
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 465:7299, s. 3-763
  • Journal article (peer-reviewed)abstract
    • For the past several decades, we have been able to directly probe the motion of atoms that is associated with chemical transformations and which occurs on the femtosecond (10(-15)-s) timescale. However, studying the inner workings of atoms and molecules on the electronic timescale(1-4) has become possible only with the recent development of isolated attosecond (10(-18)-s) laser pulses(5). Such pulses have been used to investigate atomic photoexcitation and photoionization(6,7) and electron dynamics in solids(8), and in molecules could help explore the prompt charge redistribution and localization that accompany photoexcitation processes. In recent work, the dissociative ionization of H-2 and D-2 was monitored on femtosecond timescales(9) and controlled using few-cycle near-infrared laser pulses(10). Here we report a molecular attosecond pump-probe experiment based on that work: H-2 and D-2 are dissociatively ionized by a sequence comprising an isolated attosecond ultraviolet pulse and an intense few-cycle infrared pulse, and a localization of the electronic charge distribution within the molecule is measured that depends-with attosecond time resolution-on the delay between the pump and probe pulses. The localization occurs by means of two mechanisms, where the infrared laser influences the photoionization or the dissociation of the molecular ion. In the first case, charge localization arises from quantum mechanical interference involving autoionizing states and the laser-altered wavefunction of the departing electron. In the second case, charge localization arises owing to laser-driven population transfer between different electronic states of the molecular ion. These results establish attosecond pump-probe strategies as a powerful tool for investigating the complex molecular dynamics that result from the coupling between electronic and nuclear motions beyond the usual Born-Oppenheimer approximation.
  •  
23.
  • Zhong, S., et al. (author)
  • Probing photoionization dynamics by high-spectral-resolution attosecond spectroscopy
  • 2018
  • In: Optics InfoBase Conference Papers. - 9781557528209 ; Part F115-LS 2018
  • Conference paper (peer-reviewed)abstract
    • Photoionization time delays are measured with two-color (XUV+IR) interferometric techniques. The combination of attosecond temporal resolution and high spectral resolution from narrowband harmonics allows the study of ultrafast dynamics in both time and frequency domain.
  •  
24.
  • Arnold, C. L., et al. (author)
  • Energy scaling of gas nonlinear optics
  • 2017
  • In: 30th Annual Conference of the IEEE Photonics Society, IPC 2017. - 9781509065783 ; 2017-January, s. 503-504
  • Conference paper (peer-reviewed)abstract
    • Nonlinear light-matter interactions, such as filamentation or high-order harmonic generation, are at the heart of nonlinear optics. Scaling of such effects is crucial to benefit optimally from novel laser developments. We introduce and discuss a general scaling model for nonlinear light-matter interactions in gases.
  •  
25.
  •  
26.
  • Arnold, C. L., et al. (author)
  • Stabilized interferometric attosecond timing measurements
  • 2013
  • In: CLEO : QELS_Fundamental Science, CLEO:QELS FS 2013 - QELS_Fundamental Science, CLEO:QELS FS 2013. - 9781557529725
  • Conference paper (peer-reviewed)abstract
    • We perform interferometric attosecond timing measurements to study XUV photoionization in noble gases, to diagnose macroscopic phase-matching conditions in high-order harmonic generation, and to investigate single-photon double-ionization by detecting electron pairs in coincidence.
  •  
27.
  • Busto, D., et al. (author)
  • Fano's propensity rule in angle-resolved attosecond interferometry
  • 2020. - 7
  • In: Attosecond Physics. - : IOP Publishing. - 1742-6588. ; 1412
  • Conference paper (peer-reviewed)abstract
    • Above-threshold ionization is a corner stone of attsecond science. In this work we extend Fano's propensity rule to two-photon above-threshold ionization and show that the asymmetry between absorption and emission of the second photon predicted by this propensity rule has strong implications for angle-resolved pump-probe experiments and in particular for attosecond photoelectron interferometry.
  •  
28.
  • Gayou, O, et al. (author)
  • Measurement of G(Ep)/G(Mp) in (e)over-right-arrowp -> e(p)over-right-arrow to Q(2)=5.6 GeV2
  • 2002
  • In: Physical Review Letters. - 1079-7114. ; 88:9
  • Journal article (peer-reviewed)abstract
    • The ratio of the electric and magnetic form factors of the proton G(Ep)/G(Mp), which is an image of its charge and magnetization distributions, was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the recoil polarization technique. The ratio of the form factors is directly proportional to the ratio of the transverse to longitudinal components of the polarization of the recoil proton in the elastic (e) over right arrowp --> e (p) over right arrow reaction. The new data presented span the range 3.5 < Q(2) < 5.6 GeV2 and are well described by a linear Q(2) fit. Also, the ratio rootQ(2) F-2p/F-1p reaches a constant value above Q(2) = 2 GeV2.
  •  
29.
  • Gisselbrecht, M., et al. (author)
  • Attosecond insight into electron correlation
  • 2019
  • In: Proceedings 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, CLEO/Europe-EQEC 2015. - 9781467374750
  • Conference paper (peer-reviewed)abstract
    • Photoionization with a single photon is one of the fundamental processes in nature, in which one electron is ripped away from its atom. Traditionally studied in the energy domain, this process was believed to be instantaneous, but recent advances in the production of attosecond pulses (1 as 10−18 s) in the eXtreme UltraViolet (XUV) have renewed interest in understanding the temporal aspects of electron emission in atoms, molecules and the solid state [1–8]. We present here our progress in understanding the influence of electronic correlations on the attosecond photoionization dynamics.
  •  
30.
  • Guenot, Diego, et al. (author)
  • Probing electron correlation on the attosecond time scale
  • 2014
  • In: High Intensity Lasers and High Field Phenomena, HILAS 2014. - 9781557529954
  • Conference paper (peer-reviewed)abstract
    • We present experimental measurements and theoretical calculations of single and double ionization time delays in various noble gases using an interferometric method. The measured delays allow us to extract information on the electron correlation.
  •  
31.
  • Heyl, C. M., et al. (author)
  • High-average power high-harmonic and attosecond sources : Status and prospects
  • 2016
  • In: Compact EUV and X-ray Light Sources, EUVXRAY 2016. - 9781943580095 ; Part F14-EUVXRAY 2016
  • Conference paper (peer-reviewed)abstract
    • Experiments employing extreme ultraviolet sources based on high harmonic generation often suffer from photon flux limitations. We discuss current status and prospects for scaling such sources to higher repetition rate, pulse energy and average power.
  •  
32.
  •  
33.
  • Heyl, C. M., et al. (author)
  • Scale-invariant nonlinear optical effects in gases
  • 2016
  • In: 2016 Conference on Lasers and Electro-Optics, CLEO 2016. - 9781943580118
  • Conference paper (peer-reviewed)abstract
    • A general scaling formalism for nonlinear light-matter interactions in gases is presented and experimentally verified. The formalism enables to conveniently extrapolate nonlinear phenomena, such as filamentation or high-order harmonic generation, to new laser parameters.
  •  
34.
  • Heyl, C. M., et al. (author)
  • Scale-invariant nonlinear optics in gases
  • 2016
  • In: Optica. - 2334-2536. ; 3:1, s. 75-81
  • Journal article (peer-reviewed)abstract
    • Nonlinear optical methods have become ubiquitous in many scientific areas, from fundamental studies of timeresolved electron dynamics to microscopy and spectroscopy applications. They are, however, often limited to a certain range of parameters such as pulse energy and average power. Restrictions arise from, for example, the required field intensity as well as from parasitic nonlinear effects and saturation mechanisms. Here, we identify a fundamental principle of nonlinear light-matter interaction in gases and show that paraxial nonlinear wave equations are scaleinvariant if spatial dimensions, gas density, and laser pulse energy are scaled appropriately. As an example, we apply this principle to high-order harmonic generation and provide a general method for increasing peak and average power of attosecond sources. In addition, we experimentally demonstrate the implications for the compression of short laser pulses. Our scaling principle extends well beyond those examples and includes many nonlinear processes with applications in different areas of science.
  •  
35.
  • Heyl, C. M., et al. (author)
  • Scaling Nonlinear Optics in Gases
  • 2016
  • In: High Intensity Lasers and High Field Phenomena, HILAS 2016. - 9781943580095 ; Part F15-HILAS 2016
  • Conference paper (peer-reviewed)abstract
    • Extrapolating nonlinear phenomena, such as filamentation, to new parameters as e.g. to higher pulse energy is often challenging. We here present a general scaling model for nonlinear light-matter interactions in gases and proof it experimentally.
  •  
36.
  • Isinger, M., et al. (author)
  • Photoionization in the time and frequency domain
  • 2017
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 358:6365, s. 893-6
  • Journal article (peer-reviewed)abstract
    • Ultrafast processes in matter, such as the electron emission following light absorption, can now be studied using ultrashort light pulses of attosecond duration (10−18 s) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses has raised issues in the interpretation of the experimental results and the comparison with theoretical calculations. We determine photoionization time delays in neon atoms over a 40 eV energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake-up, in which a second electron is left in an excited state, and obtain excellent agreement with theoretical calculations, thereby solving a puzzle raised by 7-year-old measurements.
  •  
37.
  • Kelkensberg, F., et al. (author)
  • Molecular Dissociative Ionization and Wave-Packet Dynamics Studied Using Two-Color XUV and IR Pump-Probe Spectroscopy
  • 2009
  • In: Physical Review Letters. - 1079-7114. ; 103:12
  • Journal article (peer-reviewed)abstract
    • We present a combined theoretical and experimental study of ultrafast wave-packet dynamics in the dissociative ionization of H-2 molecules as a result of irradiation with an extreme-ultraviolet (XUV) pulse followed by an infrared (IR) pulse. In experiments where the duration of both the XUV and IR pulses are shorter than the vibrational period of H-2+, dephasing and rephasing of the vibrational wave packet that is formed in H-2+ upon ionization of the neutral molecule by the XUV pulse is observed. In experiments where the duration of the IR pulse exceeds the vibrational period of H-2+ (15 fs), a pronounced dependence of the H+ kinetic energy distribution on XUV-IR delay is observed that can be explained in terms of the adiabatic propagation of the H-2+ wave packet on field-dressed potential energy curves.
  •  
38.
  • Klünder, Kathrin, et al. (author)
  • Reconstruction of attosecond electron wave packets using quantum state holography
  • 2013
  • In: Physical Review A (Atomic, Molecular and Optical Physics). - 1050-2947. ; 88:3
  • Journal article (peer-reviewed)abstract
    • We present a method for performing quantum state holography, with which we completely characterize the amplitude and phase of an attosecond electron wave packet. Our approach is an extension of a recent publication [J. Mauritsson et al., Phys. Rev. Lett. 105, 053001 (2010)] in which we demonstrated experimentally that the energies and amplitudes of an attosecond electron wave packet can be characterized using attosecond electron interferometry. Here we show theoretically that attosecond electron interferometry can be extended to retrieve the phases of all the states that make up the wave packet. We demonstrate the feasibility of our method by analyzing a wave packet created by a shake-up process. We show that our method can successfully retrieve arbitrary phases and/or lifetimes added to the component eigenstates.
  •  
39.
  • Mauritsson, Johan, et al. (author)
  • Attosecond Electron Spectroscopy Using a Novel Interferometric Pump-Probe Technique
  • 2010
  • In: Physical Review Letters. - 1079-7114. ; 105:5
  • Journal article (peer-reviewed)abstract
    • We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse (AP) with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original AP. By measuring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quantum beats as well as multipath interference. Analysis of the interferogram allows us to determine the bound WP components with a spectral resolution much better than the inverse of the AP duration.
  •  
40.
  • Neidel, Ch, et al. (author)
  • Probing Time-Dependent Molecular Dipoles on the Attosecond Time Scale
  • 2013
  • In: Physical Review Letters. - 1079-7114. ; 111:3
  • Journal article (peer-reviewed)abstract
    • Photoinduced molecular processes start with the interaction of the instantaneous electric field of the incident light with the electronic degrees of freedom. This early attosecond electronic motion impacts the fate of the photoinduced reactions. We report the first observation of attosecond time scale electron dynamics in a series of small-and medium-sized neutral molecules (N-2, CO2, and C2H4), monitoring time-dependent variations of the parent molecular ion yield in the ionization by an attosecond pulse, and thereby probing the time-dependent dipole induced by a moderately strong near-infrared laser field. This approach can be generalized to other molecular species and may be regarded as a first example of molecular attosecond Stark spectroscopy.
  •  
41.
  • Antoine, P, et al. (author)
  • Generation of attosecond pulses in macroscopic media
  • 1997
  • In: Physical Review A (Atomic, Molecular and Optical Physics). - 1050-2947. ; 56:6, s. 4960-4969
  • Journal article (peer-reviewed)abstract
    • We describe theoretically the generation of ultrashort (subfemtosecond) pulses using high-order harmonics of a laser pulse with a time-dependent degree of ellipticity. The single-atom response is calculated by using a low-frequency strong-field approximation. Propagation effects are taken into account using a method going beyond the slowly varying envelope approximation. Propagation modifies significantly the results obtained in the single-atom response and, in certain conditions, makes the generation of one attosecond pulse possible. We discuss prospects for the observation of these ultrashort pulses. [S1050-2947(97)09411-0].
  •  
42.
  • Bellini, M, et al. (author)
  • Temporal coherence of ultrashort high-order harmonic pulses
  • 1998
  • In: Physical Review Letters. - 1079-7114. ; 81:2, s. 297-300
  • Journal article (peer-reviewed)abstract
    • We have studied the temporal coherence of high-order harmonics (up to the 15th order) produced by focusing 100 fs laser pulses into an argon gas jet. We measure the visibility of the interference fringes, produced when two spatially separated harmonic sources interfere in the far field, as a function of the time delay between the two sources. In general, we find long coherence times, comparable to the expected pulse durations of the harmonics. For some of the harmonics, the interference pattern exhibits two regions, with significantly different coherence times. These results are interpreted in terms of different electronic trajectories contributing to harmonic generation. [S0031-9007(98)05569-7].
  •  
43.
  • Bengtsson, S., et al. (author)
  • Space–time control of free induction decay in the extreme ultraviolet
  • 2017
  • In: Nature Photonics. - : Springer Science and Business Media LLC. - 1749-4885 .- 1749-4893. ; 11:4, s. 252-258
  • Journal article (peer-reviewed)abstract
    • Ultrafast extreme-ultraviolet (XUV) and X-ray sources are revolutionizing our ability to follow femtosecond processes with ångström-scale resolution. The next frontier is to simultaneously control the direction, duration and timing of such radiation. Here, we demonstrate a fully functional opto-optical modulator for XUV light, similar to modulators available at infrared (IR) and visible wavelengths. It works by using an IR pulse to control the spatial and spectral phase of the free induction decay that results from using attosecond pulses to excite a gas. The modulator allows us to send the XUV light in a direction of our choosing at a time of our choosing. The inherent synchronization of the XUV emission to the control pulse will allow laser-pump/X-ray probe experiments with sub-femtosecond time resolution.
  •  
44.
  • Cheng, Y. C., et al. (author)
  • Can we break the symmetry along the polarization axis in photoionization?
  • 2020. - 7
  • In: Attosecond Physics. - : IOP Publishing. - 1742-6588. ; 1412
  • Conference paper (peer-reviewed)abstract
    • Photoionization is a fundamental process in which an electron is emitted from an atom. The emission is traditionally considered to be symmetric with respect to the polarization axis, unless it is temporally confined to a period shorter than an optical cycle time. We demonstrate that this symmetry can still be broken by combining a train of a few attosecond pulses and a dressing laser field. The light fields act as temporal slits and phase modulator that releases electron wavepackets. The resulting photoelectron spectra differ for electrons emitted in opposite direction along the polarization.
  •  
45.
  •  
46.
  •  
47.
  • Harth, A., et al. (author)
  • Few-cycle high-repetition rate OPCPA for multiphoton PEEM towards atto-PEEM
  • 2016
  • In: International Conference on Ultrafast Phenomena, UP 2016. - 9781943580187 ; Part F20-UP 2016
  • Conference paper (peer-reviewed)abstract
    • We present a few-cycle high-repetition rate optical parametric amplifier for multiphoton PEEM experiments on semiconductor nanowires. This parametric amplifier is also used for the generation of high-order harmonics at 200kHz for future atto-PEEM experiments.
  •  
48.
  •  
49.
  • Isinger, M., et al. (author)
  • Accuracy and precision of the RABBIT technique
  • 2019
  • In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Science. - : The Royal Society. - 1364-503X .- 1471-2962. ; 377:2145
  • Journal article (peer-reviewed)abstract
    • One of the most ubiquitous techniques within attosecond science is the so-called reconstruction of attosecond beating by interference of two-photon transitions (RABBIT). Originally proposed for the characterization of attosecond pulses, it has been successfully applied to the accurate determination of time delays in photoemission. Here, we examine in detail, using numerical simulations, the effect of the spatial and temporal properties of the light fields and of the experimental procedure on the accuracy of the method. This allows us to identify the necessary conditions to achieve the best temporal precision in RABBIT measurements. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
  •  
50.
  • Johansson, Allan, et al. (author)
  • Two-color pump-probe experiments in helium using high-order harmonics
  • 2003
  • In: European Physical Journal D. Atomic, Molecular, Optical and Plasma Physics. - : Springer Science and Business Media LLC. - 1434-6060 .- 1434-6079. ; 22:1, s. 3-11
  • Journal article (peer-reviewed)abstract
    • A pump-probe technique has been applied for measuring the lifetimes and absolute photoionization cross-sections of excited He states. The 1s2p P-1 and 1s3p P-1 states of He are excited by using the 13th and the 14th harmonic, respectively, of a tunable 70 ps dye laser generated in a Kr gas jet. The states are ionized after a varying time delay, by absorption of probe photons with energies between 1.6 and 4.5 eV. Lifetimes of tau(1s2p) = 0.57 ns and tau(1s3p) = 1.76 ns are determined with a precision of about 15%. A significant enhancement of the number of ions present in the lifetime curves at zero time delay for pressures above 6 x 10(-5) mbar is attributed to direct two-photon ionization of He in combination with AC Stark broadening of the excited state and absorption of the XUV light in the medium. Absolute photoionization cross-sections from the He 1s2p P-1 and He 1s3p P-1 states in the threshold region are determined by measuring the saturation of the ionization process with a precision of similar to 25%. In addition, the variation of the relative orientation between the polarization vectors of the pump and probe beams enables the determination of partial photoionization cross-sections.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-50 of 122

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view