SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Dehui) "

Sökning: WFRF:(Li Dehui)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sun, Yuanhao, et al. (författare)
  • Pollen-based reconstruction of total land-cover change over the Holocene in the temperate steppe region of China : An attempt to quantify the cover of vegetation and bare ground in the past using a novel approach
  • 2022
  • Ingår i: Catena (Cremlingen. Print). - : Elsevier. - 0341-8162 .- 1872-6887. ; 214
  • Tidskriftsartikel (refereegranskat)abstract
    • Fossil pollen data are essential for reconstructing ancient vegetation and land-cover changes. Sugita's REVEALS model is the best method to estimate regional plant cover (in percentage cover) using pollen data from lakes. Such reconstructions imply that the sum of all plants' cover is 100%. However, land cover is not always represented by vegetation alone, the area of bare ground can be significant in many types of biomes, e.g., in alpine or steppe regions. Here we define "total land cover " as the sum of vegetation cover (VegC) and bare ground (BareC). In this study, we use the relationship between tree pollen percentages and both tree cover (TreeC) and VegC (=TreeC + herb cover (HerbC)) based on a dataset of modern pollen assemblages and related total land cover. This relationship is applied to estimate past "actual " vegetation cover (a-VegC) from fossil pollen percentages using the Modern Analogue Technique (MAT). The REVEALS (RV) model can then be applied to the same fossil pollen records to estimate regional cover of individual plant taxa (RV PlantC; e.g., RV PinusC, etc.), total tree cover (RV-TreeC) and total herb cover (RV-HerbC). These cover values can then be converted into RV aPlantC, RV a-TreeC and RV a-HerbC using the MAT-reconstructed a-VegC (e.g., RV PinusC x MAT a-VegC = RV aPinusC; RV-TreeC x MAT a-VegC = RV a-TreeC, etc.). The results of leave-one-out cross-validation indicates that the MAT reconstructions using the modern pollen assemblages provide values of a-TreeC, a-HerbC and BareC mostly very similar to the modern vegetation data. We further tested the method using pollen assemblages from lake surface sediments of 11 lakes and the results also suggest a good performance of MAT-based reconstruction. We then applied the proposed method (MAT-REVEALS) to four Holocene pollen records available from the study area to evaluate the feasibility of the strategy to reconstruct past actual plant cover. The results suggest that the method provides plausible estimates of vegetation cover for the sub-regions within the study area. The results from Lake Daihai over the last 10,000 years BP are interpreted and discussed in more details to evaluate the effects of possible departures from the approach assumptions.
  •  
2.
  • Li, Nannan, et al. (författare)
  • Phytolith and simulation evidence for precipitation-modulated vegetation dynamics along the East Asian monsoon margin
  • 2022
  • Ingår i: Palaeogeography, Palaeoclimatology, Palaeoecology. - : Elsevier BV. - 0031-0182. ; 590
  • Tidskriftsartikel (refereegranskat)abstract
    • An improved understanding of past interactions between terrestrial vegetation and various forcings, such as climate change, human impact, and paleofire, is crucial for assessing impacts of future global change on terrestrial ecosystems. This study seeks to find the key factor or factors that have driven Holocene vegetation change along the East Asian monsoon margin. Several high-resolution pollen records are reviewed and new phytolith-based paleovegetation reconstructions and physical geochemical datasets are presented from a peatland in northeastern China. Using 108 modern topsoil samples as a training set, canopy cover and vegetation composition are estimated for the period since 5100 cal. yr BP. Variation partitioning analysis (VPA) is used to determine the relative importance of climate change, human impacts, and paleofire disturbance. The generalized dynamic vegetation model LPJ-GUESS is forced with climate anomaly output from an atmospheric general circulation model to simulate vegetation dynamics during the mid-Holocene and the pre-industrial era. The proxy-based estimates are compared to modelling output. Results indicate that regional tree cover varied from 10% to 40% during the past five millennia. The single-core, phytolith-based reconstructions are generally consistent with stacked tree pollen z-scores calculated from different records along the East Asian monsoon margin, implying that mid-Holocene tree cover decrease was persistent and almost synchronous over extensive areas. VPA demonstrates that long-term monsoon marginal vegetation successions were mainly caused by climate effects. Numerical modelling suggests that since the mid-Holocene the retreat of forests along the monsoon margin was primarily associated with precipitation deficits. Our investigation highlights that the precipitation associated with the East Asian monsoon system has exerted a stronger influence than the westerlies on the monsoon margin climate and vegetation change. With ongoing global change, close attention to variations in precipitation patterns and amounts should be especially helpful in efforts aimed at ecological monitoring, change prediction, and restoration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy