SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Jiuyi) "

Sökning: WFRF:(Li Jiuyi)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wei, Yanfei, et al. (författare)
  • Stalled oligodendrocyte differentiation in IDH-mutant gliomas.
  • 2023
  • Ingår i: Genome medicine. - 1756-994X. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Roughly 50% of adult gliomas harbor isocitrate dehydrogenase (IDH) mutations. According to the 2021 WHO classification guideline, these gliomas are diagnosed as astrocytomas, harboring no 1p19q co-deletion, or oligodendrogliomas, harboring 1p19q co-deletion. Recent studies report that IDH-mutant gliomas share a common developmental hierarchy. However, the neural lineages and differentiation stages in IDH-mutant gliomas remain inadequately characterized.Using bulk transcriptomes and single-cell transcriptomes, we identified genes enriched in IDH-mutant gliomas with or without 1p19q co-deletion, we also assessed the expression pattern of stage-specific signatures and key regulators of oligodendrocyte lineage differentiation. We compared the expression of oligodendrocyte lineage stage-specific markers between quiescent and proliferating malignant single cells. The gene expression profiles were validated using RNAscope analysis and myelin staining and were further substantiated using data of DNA methylation and single-cell ATAC-seq. As a control, we assessed the expression pattern of astrocyte lineage markers.Genes concordantly enriched in both subtypes of IDH-mutant gliomas are upregulated in oligodendrocyte progenitor cells (OPC). Signatures of early stages of oligodendrocyte lineage and key regulators of OPC specification and maintenance are enriched in all IDH-mutant gliomas. In contrast, signature of myelin-forming oligodendrocytes, myelination regulators, and myelin components are significantly down-regulated or absent in IDH-mutant gliomas. Further, single-cell transcriptomes of IDH-mutant gliomas are similar to OPC and differentiation-committed oligodendrocyte progenitors, but not to myelinating oligodendrocyte. Most IDH-mutant glioma cells are quiescent; quiescent cells and proliferating cells resemble the same differentiation stage of oligodendrocyte lineage. Mirroring the gene expression profiles along the oligodendrocyte lineage, analyses of DNA methylation and single-cell ATAC-seq data demonstrate that genes of myelination regulators and myelin components are hypermethylated and show inaccessible chromatin status, whereas regulators of OPC specification and maintenance are hypomethylated and show open chromatin status. Markers of astrocyte precursors are not enriched in IDH-mutant gliomas.Our studies show that despite differences in clinical manifestation and genomic alterations, all IDH-mutant gliomas resemble early stages of oligodendrocyte lineage and are stalled in oligodendrocyte differentiation due to blocked myelination program. These findings provide a framework to accommodate biological features and therapy development for IDH-mutant gliomas.
  •  
2.
  • Li, Jiuyi, et al. (författare)
  • Individual Assignment of Adult Diffuse Gliomas into the EM/PM Molecular Subtypes Using a TaqMan Low-Density Array.
  • 2019
  • Ingår i: Clinical cancer research : an official journal of the American Association for Cancer Research. - 1078-0432. ; 25:23, s. 7068-7077
  • Tidskriftsartikel (refereegranskat)abstract
    • We aimed to develop a diagnostic platform to capture the transcriptomic resemblance of individual adult diffuse gliomas of WHO grades II-IV to neural development and the genomic signature associated with glioma progression.Based on the EM/PM classification scheme, we designed a RT-PCR-based TaqMan Low-density array (TLDA) containing 44 classifier and 4 reference genes. Samples of a training data set (GSE48865), characterized by RNA-sequencing, were utilized to optimize the TLDA design and to develop a support vector machine (SVM)-based prediction model. Complemented with Sanger sequencing for IDH1/2, and low coverage whole genome sequencing (WGS), the TLDA and SVM prediction model were tested in a validation (31 gliomas) and a test (121 gliomas) dataset.Independent of morphologically defined subtypes and grades, gliomas can be individually assigned into the EM and PM glioma subtypes with the respective areas under ROC curves at 0.86 and 0.85 in the validation dataset. The EM gliomas showed a medium overall survival (OS) of 15.6 months, whereas the medium OS for PM gliomas was not reached (hazard ratio = 3.55, 95% confidence interval: 1.96 to 6.45). The EM and PM gliomas showed distinct patterns of genomic alterations, with IDH mutation and 1p19q co-deletion in the PM gliomas and gain of chromosome 7/loss of chromosome 10 in the EM gliomas. Extensive chromosomal abnormalities marked the progression of PM gliomas.The integration of EM/PM subtyping, IDH sequencing and low coverage WGS may improve the risk stratification and selection of treatment regimens for glioma patients.
  •  
3.
  • Sjollema, Jelmer, et al. (författare)
  • In vitro methods for the evaluation of antimicrobial surface designs
  • 2018
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 70, s. 12-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial adhesion and subsequent biofilm formation on biomedical implants and devices are a major cause of their failure. As systemic antibiotic treatment is often ineffective, there is an urgent need for antimicrobial biomaterials and coatings. The term “antimicrobial” can encompass different mechanisms of action (here termed “antimicrobial surface designs”), such as antimicrobial-releasing, contact-killing or non-adhesivity. Biomaterials equipped with antimicrobial surface designs based on different mechanisms of action require different in vitro evaluation methods. Available industrial standard evaluation tests do not address the specific mechanisms of different antimicrobial surface designs and have therefore been modified over the past years, adding to the myriad of methods available in the literature to evaluate antimicrobial surface designs. The aim of this review is to categorize fourteen presently available methods including industrial standard tests for the in vitro evaluation of antimicrobial surface designs according to their suitability with respect to their antimicrobial mechanism of action. There is no single method or industrial test that allows to distinguish antimicrobial designs according to all three mechanisms identified here. However, critical consideration of each method clearly relates the different methods to a specific mechanism of antimicrobial action. It is anticipated that use of the provided table with the fourteen methods will avoid the use of wrong methods for evaluating new antimicrobial designs and therewith facilitate translation of novel antimicrobial biomaterials and coatings to clinical use. The need for more and better updated industrial standard tests is emphasized. Statement of Significance European COST-action TD1305, IPROMEDAI aims to provide better understanding of mechanisms of antimicrobial surface designs of biomaterial implants and devices. Current industrial evaluation standard tests do not sufficiently account for different, advanced antimicrobial surface designs, yet are urgently needed to obtain convincing in vitro data for approval of animal experiments and clinical trials. This review aims to provide an innovative and clear guide to choose appropriate evaluation methods for three distinctly different mechanisms of antimicrobial design: (1) antimicrobial-releasing, (2) contact-killing and (3) non-adhesivity. Use of antimicrobial evaluation methods and definition of industrial standard tests, tailored toward the antimicrobial mechanism of the design, as identified here, fulfill a missing link in the translation of novel antimicrobial surface designs to clinical use.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy