SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Longhui) "

Sökning: WFRF:(Li Longhui)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Whitley, Rhys, et al. (författare)
  • A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas
  • 2016
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 13:11, s. 3245-3265
  • Tidskriftsartikel (refereegranskat)abstract
    • The savanna ecosystem is one of the most dominant and complex terrestrial biomes, deriving from a distinct vegetative surface comprised of co-dominant tree and grass populations. While these two vegetation types co-exist functionally, demographically they are not static but are dynamically changing in response to environmental forces such as annual fire events and rainfall variability. Modelling savanna environments with the current generation of terrestrial biosphere models (TBMs) has presented many problems, particularly describing fire frequency and intensity, phenology, leaf biochemistry of C3 and C4 photosynthesis vegetation, and root-water uptake. In order to better understand why TBMs perform so poorly in savannas, we conducted a model inter-comparison of six TBMs and assessed their performance at simulating latent energy (LE) and gross primary productivity (GPP) for five savanna sites along a rainfall gradient in northern Australia. Performance in predicting LE and GPP was measured using an empirical benchmarking system, which ranks models by their ability to utilise meteorological driving information to predict the fluxes. On average, the TBMs performed as well as a multi-linear regression of the fluxes against solar radiation, temperature and vapour pressure deficit but were outperformed by a more complicated nonlinear response model that also included the leaf area index (LAI). This identified that the TBMs are not fully utilising their input information effectively in determining savanna LE and GPP and highlights that savanna dynamics cannot be calibrated into models and that there are problems in underlying model processes. We identified key weaknesses in a model's ability to simulate savanna fluxes and their seasonal variation, related to the representation of vegetation by the models and root-water uptake. We underline these weaknesses in terms of three critical areas for development. First, prescribed tree-rooting depths must be deep enough, enabling the extraction of deep soil-water stores to maintain photosynthesis and transpiration during the dry season. Second, models must treat grasses as a co-dominant interface for water and carbon exchange rather than a secondary one to trees. Third, models need a dynamic representation of LAI that encompasses the dynamic phenology of savanna vegetation and its response to rainfall interannual variability. We believe that this study is the first to assess how well TBMs simulate savanna ecosystems and that these results will be used to improve the representation of savannas ecosystems in future global climate model studies.
  •  
2.
  • Whitley, Rhys, et al. (författare)
  • Challenges and opportunities in land surface modelling of savanna ecosystems
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:20, s. 4711-4732
  • Tidskriftsartikel (refereegranskat)abstract
    • The savanna complex is a highly diverse global biome that occurs within the seasonally dry tropical to sub-tropical equatorial latitudes and are structurally and functionally distinct from grasslands and forests. Savannas are open-canopy environments that encompass a broad demographic continuum, often characterised by a changing dominance between C3-tree and C4-grass vegetation, where frequent environmental disturbances such as fire modulates the balance between ephemeral and perennial life forms. Climate change is projected to result in significant changes to the savanna floristic structure, with increases to woody biomass expected through CO2 fertilisation in mesic savannas and increased tree mortality expected through increased rainfall interannual variability in xeric savannas. The complex interaction between vegetation and climate that occurs in savannas has traditionally challenged terrestrial biosphere models (TBMs), which aim to simulate the interaction between the atmosphere and the land surface to predict responses of vegetation to changing in environmental forcing. In this review, we examine whether TBMs are able to adequately represent savanna fluxes and what implications potential deficiencies may have for climate change projection scenarios that rely on these models. We start by highlighting the defining characteristic traits and behaviours of savannas, how these differ across continents and how this information is (or is not) represented in the structural framework of many TBMs. We highlight three dynamic processes that we believe directly affect the water use and productivity of the savanna system: phenology, root-water access and fire dynamics. Following this, we discuss how these processes are represented in many current-generation TBMs and whether they are suitable for simulating savanna fluxes.Finally, we give an overview of how eddy-covariance observations in combination with other data sources can be used in model benchmarking and intercomparison frameworks to diagnose the performance of TBMs in this environment and formulate road maps for future development. Our investigation reveals that many TBMs systematically misrepresent phenology, the effects of fire and root-water access (if they are considered at all) and that these should be critical areas for future development. Furthermore, such processes must not be static (i.e. prescribed behaviour) but be capable of responding to the changing environmental conditions in order to emulate the dynamic behaviour of savannas. Without such developments, however, TBMs will have limited predictive capability in making the critical projections needed to understand how savannas will respond to future global change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy