SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lilliu M) "

Sökning: WFRF:(Lilliu M)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Isola, M., et al. (författare)
  • Subcellular distribution of melatonin receptors in human parotid glands
  • 2013
  • Ingår i: Journal of Anatomy. - : Wiley. - 0021-8782. ; 223:5, s. 519-524
  • Tidskriftsartikel (refereegranskat)abstract
    • The hormone melatonin influences oral health through a variety of actions, such as anti-inflammatory, anti-oxidant, immunomodulatory and antitumour. Many of these melatonin functions are mediated by a family of membrane receptors expressed in the oral epithelium and salivary glands. Using immunoblotting and immunohistochemistry, recent studies have shown that the melatonin membrane receptors, MT1 and MT2, are present in rat and human salivary glands. To date, no investigation has dealt with the ultrastructural distribution of the melatonin receptors. This was the aim of the present study, using the immunogold method applied to the human parotid gland. Reactivity to MT1 and, with less intensity, to MT2 appeared in the secretory granules of acinar cells and in the cytoplasmic vesicles of both acinar and ductal cells. Plasma membranes were also stained, albeit slightly. The peculiar intracytoplasmic distribution of these receptors may indicate that there is an uptake/transport system for melatonin from the circulation into the saliva.
  •  
4.
  • Abdi-Jalebi, Mojtaba, et al. (författare)
  • Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 555, s. 497-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability2 (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.
  •  
5.
  • Isola, M., et al. (författare)
  • Dynamics of the melatonin MT1 receptor in the rat parotidgland upon melatonin administration
  • 2016
  • Ingår i: Journal of Physiology and Pharmacology. - 0867-5910. ; 67:1, s. 111-119
  • Tidskriftsartikel (refereegranskat)abstract
    • Our recent ultrastructural study of human parotid glands revealed that the melatonin receptors, MT1 and MT2, are localised in the plasma cell membranes of acinar and ductal cells but also, and intriguingly, predominantly in acinar secretory granules, giving rise to the working hypothesis that secretory granules are a part of a transcytotic transport system for melatonin. To put this hypothesis to the test in rat parotid glands, anaesthetised animals were exposed to a high melatonin dose (3 mg/kg per hour), infused intravenously over two hours and aiming to stimulate a glandular melatonin-receptor-dependent intracellular transport system, if any. Thirty minutes later, the right parotids were removed. Pre-stimulation, left parotid gland tissue was removed to serve as (untreated) controls. Gland tissues were processed for the gold post-embedding technique and for western blot analysis. In untreated glands, on transmission electron microscope images, melatonin receptors displayed a distribution pattern similar to that in human parotids, i.e. here, too, the receptors were principally associated with the acinar secretory granules. In melatonin-treated glands, the number of granules associated with the MT1 receptor was twice that in untreated glands, despite the same total granule number in the two glands. Moreover, the density of gold particles showing MT1-receptor immunoreactivity associated with granules in melatonin-treated glands was 2.5 times that in untreated glands. The number of MT1 receptors associated with the granule membrane was about three times higher in melatonin-treated glands than in untreated glands, while the number of MT1 receptors inside the granules was about twice that in untreated glands. The immunoblotting of membrane-enriched samples showed that the MT1-receptor expression was about three times that of untreated glands. When it came to the MT2 receptor, no changes were observed. Melatonin itself thus exerts dynamic effects on its MT1 receptor, which may reflect an adaptive receptor-linked carrier system for melatonin, delivering - upon gland stimulation - melatonin to the saliva by exocytosis. © 2016, Polish Physiological Society. All right reserved.
  •  
6.
  • Loy, F., et al. (författare)
  • The antipsychotic amisulpride: ultrastructural evidence of its secretory activity in salivary glands
  • 2014
  • Ingår i: Oral Diseases. - : Wiley. - 1354-523X. ; 20:8, s. 796-802
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveAmisulpride is reported to inhibit clozapine-induced sialorrhea. Preclinically, clozapine evokes muscarinic-M1-type-mediated secretion that, however, amisulpride does not reduce. Instead, amisulpride, without causing any overt secretion per se, enhances both nerve- and autonomimetic-evoked salivation by unknown mechanism(s). Hypothesizing that amisulpride prepares the gland for secretion, we looked for ultrastructural events indicating secretory activity in intercellular canaliculi of serous/seromucous cells, that is, density increase in protrusions (reflecting anchored granules) and in microbuds (reflecting recycling membranes and/or vesicle secretion) and decrease in microvilli (reflecting the cytoskeletal re-arrangement related to exocytosis). Material and MethodsRat parotid and submandibular glands were exposed to amisulpride in vivo or in vitro. Glands were processed for transmission electron and scanning electron microscopy and then morphometrically assessed. ResultsCells were packed with secretory granules. The density of protrusions increased in both glands, whereas significant and parallel changes in microvilli and microbuds occurred only in parotid glands, and in vitro. ConclusionsAmisulpride induced ultrastructural signs of secretory activity but to varying extent; in submandibular glands, in contrast to parotid glands, changes were not brought beyond the granular anchoring stage. Amisulpride may provide an overall readiness for secretion that will result in augmented responses to agonists, a phenomenon of potential interest in dry-mouth treatment.
  •  
7.
  • Loy, F., et al. (författare)
  • Ultrastructural evidence of a secretory role for melatonin in the human parotid gland
  • 2015
  • Ingår i: Journal of Physiology and Pharmacology. - 0867-5910. ; 66:6, s. 847-853
  • Tidskriftsartikel (refereegranskat)abstract
    • In vivo animal studies show that pentagastrin, cholecystokinin and melatonin cause the secretion and synthesis of salivary proteins. Melatonin occurs in large amounts in the gut and is released into the blood on food intake. In vitro experiments suggest that pentagastrin exerts secretory activity in human salivary glands, as judged by ultrastructural changes, reflecting secretion, and an actual protein output. Currently, it is hypothesised that melatonin induces secretory exocytotic events in the human parotid gland. Human parotid tissues were exposed to a high single concentration of melatonin in vitro, processed for high resolution scanning electron microscopy and then assessed morphometrically with the emphasis on the membrane of the intercellular canaliculi, a site of protein secretion. Compared with controls and in terms of density, the melatonin-exposed parotid tissues displayed increases in protrusions (signalling anchored granules) and microbuds (signalling membrane recycling and/or vesicle secretion) and decreases in microvilli (signalling cytoskeletal re-arrangement related to exocytosis), phenomena abolished or very largely reduced by the melatonin receptor blocker, luzindole. In conclusion, acinar serous cells of parotid tissue displayed in vitro exocytotic activity to melatonin, signalling protein secretion. Whether, under physiological conditions, melatonin influences the secretion of human parotid glands remains to be explored, however.
  •  
8.
  • Abdi-Jalebi, Mojtaba, et al. (författare)
  • Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations
  • 2018
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 12:7, s. 7301-7311
  • Tidskriftsartikel (refereegranskat)abstract
    • We report significant improvements in the optoelectronic properties of lead halide perovskites with the addition of monovalent ions with ionic radii close to Pb2+. We investigate the chemical distribution and electronic structure of solution processed CH3NH3PbI3 perovskite structures containing Na+, Cu+, and Ag+, which are lower valence metal ions than Pb2+ but have similar ionic radii. Synchrotron X-ray diffraction reveals a pronounced shift in the main perovskite peaks for the monovalent cation-based films, suggesting incorporation of these cations into the perovskite lattice as well as a preferential crystal growth in Ag+ containing perovskite structures. Furthermore, the synchrotron X-ray photoelectron measurements show a significant change in the valence band position for Cu- and Ag-doped films, although the perovskite bandgap remains the same, indicating a shift in the Fermi level position toward the middle of the bandgap. Such a shift infers that incorporation of these monovalent cations dedope the n-type perovskite films when formed without added cations. This dedoping effect leads to cleaner bandgaps as reflected by the lower energetic disorder in the monovalent cation-doped perovskite thin films as compared to pristine films. We also find that in contrast to Ag+ and Cu+, Na+ locates mainly at the grain boundaries and surfaces. Our theoretical calculations confirm the observed shifts in X-ray diffraction peaks and Fermi level as well as absence of intrabandgap states upon energetically favorable doping of perovskite lattice by the monovalent cations. We also model a significant change in the local structure, chemical bonding of metal-halide, and the electronic structure in the doped perovskites. In summary, our work highlights the local chemistry and influence of monovalent cation dopants on crystallization and the electronic structure in the doped perovskite thin films.
  •  
9.
  • Sokolski, Mateusz, et al. (författare)
  • Phenotype clustering of hospitalized high-risk patients with COVID-19-a machine learning approach within the multicentre, multinational PCHF-COVICAV registry
  • 2024
  • Ingår i: CARDIOLOGY JOURNAL. - 1897-5593 .- 1898-018X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The high-risk population of patients with cardiovascular (CV) disease or risk factors (RF) suffering from COVID-19 is heterogeneous. Several predictors for impaired prognosis have been identified. However, with machine learning (ML) approaches, certain phenotypes may be confined to classify the affected population and to predict outcome. This study aimed to phenotype patients using unsupervised ML technique within the International Postgraduate Course Heart Failure Registry for patients hospitalized with COVID-19 and Cardiovascular disease and/or RF (PCHF-COVICAV). Material and methods: Patients from the eight centres with follow-up data available from the PCHF-COVICAV registry were included in this ML analysis (K-medoids algorithm). Results: Out of 617 patients included into the prospective part of the registry, 458 [median age: 76 (IQR:65-84) years, 55% male] were analyzed and 46 baseline variables, including demographics, clinical status, comorbidities and biochemical characteristics were incorporated into the ML. Three clusters were extracted by this ML method. Cluster 1 (n = 181) represents mainly women with the least number of overall comorbidities and cardiovascular RF. Cluster 2 (n = 227) is characterized mainly by men with non-CV conditions and less severe symptoms of infection. Cluster 3 (n = 50) mainly represents men with the highest prevalence of cardiac comorbidities and RF, more extensive inflammation and organ dysfunction with the highest 6-month all-cause mortality risk. Conclusions: The ML process has identified three important clinical clusters from hospitalized COVID-19 CV and/or RF patients. The cluster of males with severe CV disease, particularly HF, and multiple RF presenting with increased inflammation had a particularly poor outcome.
  •  
10.
  • Zhao, Baodan, et al. (författare)
  • High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes
  • 2018
  • Ingår i: Nature Photonics. - : NATURE PUBLISHING GROUP. - 1749-4885 .- 1749-4893. ; 12:12, s. 783-
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite-based optoelectronic devices are gaining much attention owing to their remarkable performance and low processing cost, particularly for solar cells. However, for perovskite light-emitting diodes, non-radiative charge recombination has limited the electroluminescence efficiency. Here we demonstrate perovskite-polymer bulk heterostructure light-emitting diodes exhibiting external quantum efficiencies of up to 20.1% (at current densities of 0.1-1 mA cm(-2)). The light-emitting diode emissive layer comprises quasi-two-dimensional and three-dimensional (2D/3D) perovskites and an insulating polymer. Photogenerated excitations migrate from quasi-2D to lower-energy sites within 1 ps, followed by radiative bimolecular recombination in the 3D regions. From near-unity external photoluminescence quantum efficiencies and transient kinetics of the emissive layer with and without charge-transport contacts, we find non-radiative recombination pathways to be effectively eliminated, consistent with optical models giving near 100% internal quantum efficiencies. Although the device brightness and stability (T-50 = 46 h in air at peak external quantum efficiency) require further improvement, our results indicate the significant potential of perovskite-based photon sources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy