SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Limdi N. A.) "

Search: WFRF:(Limdi N. A.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Horne, B D, et al. (author)
  • Pharmacogenetic warfarin dose refinements remain significantly influenced by genetic factors after one week of therapy
  • 2012
  • In: Thrombosis and Haemostasis. - 0340-6245 .- 2567-689X. ; 107:2, s. 232-240
  • Journal article (peer-reviewed)abstract
    • By guiding initial warfarin dose, pharmacogenetic (PGx) algorithms may improve the safety of warfarin initiation. However, once international normalised ratio (INR) response is known, the contribution of PGx to dose refinements is uncertain. This study sought to develop and validate clinical and PGx dosing algorithms for warfarin dose refinement on days 6-11 after therapy initiation. An international sample of 2,022 patients at 13 medical centres on three continents provided clinical, INR, and genetic data at treatment days 6-11 to predict therapeutic warfarin dose. Independent derivation and retrospective validation samples were composed by randomly dividing the population (80%/20%). Prior warfarin doses were weighted by their expected effect on S-warfarin concentrations using an exponential-decay pharmacokinetic model. The INR divided by that "effective" dose constituted a treatment response index . Treatment response index, age, amiodarone, body surface area, warfarin indication, and target INR were associated with dose in the derivation sample. A clinical algorithm based on these factors was remarkably accurate: in the retrospective validation cohort its R2 was 61.2% and median absolute error (MAE) was 5.0 mg/week. Accuracy and safety was confirmed in a prospective cohort (N=43). CYP2C9 variants and VKORC1-1639 G→A were significant dose predictors in both the derivation and validation samples. In the retrospective validation cohort, the PGx algorithm had: R2= 69.1% (p<0.05 vs. clinical algorithm), MAE= 4.7 mg/week. In conclusion, a pharmacogenetic warfarin dose-refinement algorithm based on clinical, INR, and genetic factors can explain at least 69.1% of therapeutic warfarin dose variability after about one week of therapy.
  •  
3.
  •  
4.
  • Lenzini, P., et al. (author)
  • Integration of genetic, clinical, and INR data to refine warfarin dosing
  • 2010
  • In: Clinical Pharmacology and Therapeutics. - : Springer Science and Business Media LLC. - 0009-9236 .- 1532-6535. ; 87:5, s. 572-578
  • Journal article (peer-reviewed)abstract
    • Well-characterized genes that affect warfarin metabolism (cytochrome P450 (CYP) 2C9) and sensitivity (vitamin K epoxide reductase complex 1 (VKORC1)) explain one-third of the variability in therapeutic dose before the international normalized ratio (INR) is measured. To determine genotypic relevance after INR becomes available, we derived clinical and pharmacogenetic refinement algorithms on the basis of INR values (on day 4 or 5 of therapy), clinical factors, and genotype. After adjusting for INR, CYP2C9 and VKORC1 genotypes remained significant predictors (P < 0.001) of warfarin dose. The clinical algorithm had an R(2) of 48% (median absolute error (MAE): 7.0 mg/week) and the pharmacogenetic algorithm had an R(2) of 63% (MAE: 5.5 mg/week) in the derivation set (N = 969). In independent validation sets, the R(2) was 26-43% with the clinical algorithm and 42-58% when genotype was added (P = 0.002). After several days of therapy, a pharmacogenetic algorithm estimates the therapeutic warfarin dose more accurately than one using clinical factors and INR response alone.
  •  
5.
  • Klein, T. E., et al. (author)
  • Estimation of the warfarin dose with clinical and pharmacogenetic data
  • 2009
  • In: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 360:8, s. 753-764
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Genetic variability among patients plays an important role in determining the dose of warfarin that should be used when oral anticoagulation is initiated, but practical methods of using genetic information have not been evaluated in a diverse and large population. We developed and used an algorithm for estimating the appropriate warfarin dose that is based on both clinical and genetic data from a broad population base.METHODS: Clinical and genetic data from 4043 patients were used to create a dose algorithm that was based on clinical variables only and an algorithm in which genetic information was added to the clinical variables. In a validation cohort of 1009 subjects, we evaluated the potential clinical value of each algorithm by calculating the percentage of patients whose predicted dose of warfarin was within 20% of the actual stable therapeutic dose; we also evaluated other clinically relevant indicators.RESULTS: In the validation cohort, the pharmacogenetic algorithm accurately identified larger proportions of patients who required 21 mg of warfarin or less per week and of those who required 49 mg or more per week to achieve the target international normalized ratio than did the clinical algorithm (49.4% vs. 33.3%, P<0.001, among patients requiring < or = 21 mg per week; and 24.8% vs. 7.2%, P<0.001, among those requiring > or = 49 mg per week).CONCLUSIONS: The use of a pharmacogenetic algorithm for estimating the appropriate initial dose of warfarin produces recommendations that are significantly closer to the required stable therapeutic dose than those derived from a clinical algorithm or a fixed-dose approach. The greatest benefits were observed in the 46.2% of the population that required 21 mg or less of warfarin per week or 49 mg or more per week for therapeutic anticoagulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view