SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindås Ann Christin) "

Sökning: WFRF:(Lindås Ann Christin)

  • Resultat 1-35 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wassing, Gabriela M., et al. (författare)
  • DNA Blocks the Lethal Effect of Human Beta-Defensin 2 Against Neisseria meningitidis
  • 2021
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Neisseria meningitidis is a gram-negative bacterium that often asymptomatically colonizes the human nasopharyngeal tract. These bacteria cross the epithelial barrier can cause life-threatening sepsis and/or meningitis. Antimicrobial peptides are one of the first lines of defense against invading bacterial pathogens. Human beta-defensin 2 (hBD2) is an antimicrobial peptide with broad antibacterial activity, although its mechanism of action is poorly understood. Here, we investigated the effect of hBD2 on N. meningitidis. We showed that hBD2 binds to and kills actively growing meningococcal cells. The lethal effect was evident after 2 h incubation with the peptide, which suggests a slow killing mechanism. Further, the membrane integrity was not changed during hBD2 treatment. Incubation with lethal doses of hBD2 decreased the presence of diplococci; the number and size of bacterial microcolonies/aggregates remained constant, indicating that planktonic bacteria may be more susceptible to the peptide. Meningococcal DNA bound hBD2 in mobility shift assays and inhibited the lethal effect of hBD2 in a dose-dependent manner both in suspension and biofilms, supporting the interaction between hBD2 and DNA. Taken together, the ability of meningococcal DNA to bind hBD2 opens the possibility that extracellular DNA due to bacterial lysis may be a means of N. meningitidis to evade immune defenses.
  •  
2.
  •  
3.
  • Braun, Tatjana, et al. (författare)
  • Archaeal actin from a hyperthermophile forms a single-stranded filament
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:30, s. 9340-9345
  • Tidskriftsartikel (refereegranskat)abstract
    • The prokaryotic origins of the actin cytoskeleton have been firmly established, but it has become clear that the bacterial actins form a wide variety of different filaments, different both from each other and from eukaryotic F-actin. We have used electron cryomicroscopy (cryo-EM) to examine the filaments formed by the protein crenactin (a crenarchaeal actin) from Pyrobaculum calidifontis, an organism that grows optimally at 90 degrees C. Although this protein only has similar to 20% sequence identity with eukaryotic actin, phylogenetic analyses have placed it much closer to eukaryotic actin than any of the bacterial homologs. It has been assumed that the crenactin filament is double-stranded, like F-actin, in part because it would be hard to imagine how a single-stranded filament would be stable at such high temperatures. We show that not only is the crenactin filament single-stranded, but that it is remarkably similar to each of the two strands in F-actin. A large insertion in the crenactin sequence would prevent the formation of an F-actin-like double-stranded filament. Further, analysis of two existing crystal structures reveals six different subunit-subunit interfaces that are filament-like, but each is different from the others in terms of significant rotations. This variability in the subunit-subunit interface, seen at atomic resolution in crystals, can explain the large variability in the crenactin filaments observed by cryo-EM and helps to explain the variability in twist that has been observed for eukaryotic actin filaments.
  •  
4.
  • Couturier, Mohea, et al. (författare)
  • The DNA Methylome of the Hyperthermoacidophilic Crenarchaeon Sulfolobus acidocaldarius
  • 2018
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation is the most common epigenetic modification observed in the genomic DNA (gDNA) of prokaryotes and eukaryotes. Methylated nucleobases, N-6-methyladenine (m6A), N-4-methyl-cytosine (m4C), and 5-methyl-cytosine (m5C), detected on gDNA represent the discrimination mark between self and non-self DNA when they are part of restriction-modification systems in prokaryotes (Bacteria and Archaea). In addition, m5C in Eukaryotes and m6A in Bacteria play an important role in the regulation of key cellular processes. Although archaeal genomes present modified bases as in the two other domains of life, the significance of DNA methylations as regulatory mechanisms remains largely uncharacterized in Archaea. Here, we began by investigating the DNA methylome of Sulfolobus acidocaldarius. The strategy behind this initial study entailed the use of combined digestion assays, dot blots, and genome resequencing, which utilizes specific restriction enzymes, antibodies specifically raised against m6A and m5C and single-molecule real-time (SMRT) sequencing, respectively, to identify DNA methylations occurring in exponentially growing cells. The previously identified restriction-modification system, specific of S. acidocaldarius, was confirmed by digestion assay and SMRT sequencing while, the presence of m6A was revealed by dot blot and identified on the characteristic Dam motif by SMRT sequencing. No m5C was detected by dot blot under the conditions tested. Furthermore, by comparing the distribution of both detected methylations along the genome and, by analyzing DNA methylation profiles in synchronized cells, we investigated in which cellular pathways, in particular the cell cycle, this m6A methylation could be a key player. The analysis of sequencing data rejected a role for m6A methylation in another defense system and also raised new questions about a potential involvement of this modification in the regulation of other biological functions in S. acidocaldarius.
  •  
5.
  • Eklund, Sandra, et al. (författare)
  • Exploring the active site of tripeptidyl-peptidase II through studies of pH dependence of reaction kinetics
  • 2012
  • Ingår i: Biochimica et Biophysica Acta - Proteins and Proteomics. - : Elsevier BV. - 1570-9639 .- 1878-1454. ; 1824:4, s. 561-570
  • Tidskriftsartikel (refereegranskat)abstract
    • Tripeptidyl-peptidase II (TPP II) is a subtilisin-like serine protease which forms a large enzyme complex (> 4 MDa). It is considered a potential drug target due to its involvement in specific physiological processes. However, information is scarce concerning the kinetic characteristics of TPP II and its active site features, which are important for design of efficient inhibitors. To amend this, we probed the active site by determining the pH dependence of TPP II catalysis. Access to pure enzyme is a prerequisite for kinetic investigations and herein we introduce the first efficient purification system for heterologously expressed mammalian TPP II. The pH dependence of kinetic parameters for hydrolysis of two different chromogenic substrates, Ala-Ala-Phe-pNA and Ala-Ala-Ala-pNA, was determined for murine, human and Drosophila melanogaster TPP II as well as mutant variants thereof. The investigation demonstrated that TPP II, in contrast to subtilisin, has a bell-shaped pH dependence of kcatapp/KM probably due to deprotonation of the N-terminal amino group of the substrate at higher pH. Since both the KM and kcatapp are lower for cleavage of AAA-pNA than for AAF-pNA we propose that the former can bind non-productively to the active site of the enzyme, a phenomenon previously observed with some substrates for subtilisin. Two mutant variants, H267A and D387G, showed bell-shaped pH-dependence of kcatapp, possibly due to an impaired protonation of the leaving group. This work reveals previously unknown differences between TPP II orthologues and subtilisin as well as features that might be conserved within the entire family of subtilisin-like serine peptidases.
  •  
6.
  • Eklund, Sandra, et al. (författare)
  • Inter-species variation in the pH dependence of tripeptidyl-peptidase II
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Tripeptidyl-peptidase II (TPP II) is a large enzyme complex (>4 MDa) participating in the general protein turn-over in the cell downstream of the proteasome. In addition, there have been reports of involvement of TPP II in different physiological situations. To facilitate further investigations of the physiological role of TPP II and its enzymatic properties, a characterization at protein level is necessary. Therefore, an expression system for murine TPP II using Escherichia coli has been developed. The pH-optimum for cleavage of two different chromogenic substrates, Ala-Ala-Phe-pNA and Ala-Ala-Ala-pNA, was investigated for mTPP II, and compared with human TPP II and TPP II from Drosophila melanogaster. It was shown that the mouse enzyme had similar pH dependence as the human enzyme, while dTPP II had a slightly lower optimum. Surprisingly, the investigation also demonstrated that TPP II from all sources showed a different pH-profile for hydrolysis of AAA-pNA compared to AAF-pNA. To investigate this observation further, steady-state kinetic parameters were determined at various pH. Since both the KM and Vmax are lower for cleavage of AAA-pNA, a potential explanation could be that the substrate AAA-pNA is non-productively bound to the active site of the enzyme.
  •  
7.
  • Ettema, Thijs J. G., et al. (författare)
  • An actin-based cytoskeleton in archaea
  • 2011
  • Ingår i: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 80:4, s. 1052-1061
  • Tidskriftsartikel (refereegranskat)abstract
    • In eukaryotic and bacterial cells, spatial organization is dependent upon cytoskeletal filaments. Actin is a main eukaryotic cytoskeletal element, involved in key processes such as cell shape determination, mechanical force generation and cytokinesis. We describe an archaeal cytoskeleton which forms helical structures within Pyrobaculum calidifontis cells, as shown by in situ immunostaining. The core components include an archaeal actin homologue, Crenactin, closely related to the eukaryotic counterpart. The crenactin gene belongs to a conserved gene cluster denoted Arcade (actin-related cytoskeleton in Archaea involved in shape determination). The phylogenetic distribution of arcade genes is restricted to the crenarchaeal Thermoproteales lineage, and to Korarchaeota, and correlates with rod-shaped and filamentous cell morphologies. Whereas Arcadin-1, -3 and -4 form helical structures, suggesting cytoskeleton-associated functions, Arcadin-2 was found to be localized between segregated nucleoids in a cell subpopulation, in agreement with possible involvement in cytokinesis. The results support a crenarchaeal origin of the eukaryotic actin cytoskeleton and, as such, have implications for theories concerning the origin of the eukaryotic cell.
  •  
8.
  • Ettema, Thijs J. G., et al. (författare)
  • Rolf Bernander (1956-2014) : pioneer of the archaeal cell cycle Obituary
  • 2014
  • Ingår i: Molecular Microbiology. - : John Wiley & Sons. - 0950-382X .- 1365-2958. ; 92:5, s. 903-909
  • Tidskriftsartikel (populärvet., debatt m.m.)abstract
    • On 19 January 2014 Rolf (Roffe') Bernander passed away unexpectedly. Rolf was a dedicated scientist; his research aimed at unravelling the cell biology of the archaeal domain of life, especially cell cycle-related questions, but he also made important contributions in other areas of microbiology. Rolf had a professor position in the Molecular Evolution programme at Uppsala University, Sweden for about 8 years, and in January 2013 he became chair professor at the Department of Molecular Biosciences, The Wenner-Gren Institute at Stockholm University in Sweden. Rolf was an exceptional colleague and will be deeply missed by his family and friends, and the colleagues and co-workers that he leaves behind in the scientific community. He will be remembered for his endless enthusiasm for science, his analytical mind, and his quirky sense of humour.
  •  
9.
  • Haq, Syed Razaul, et al. (författare)
  • NMR resonance assignment and dynamics of profilin from Heimdallarchaeota
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of the eukaryotic cell is an unsettled scientific question. The Asgard superphylum has emerged as a compelling target for studying eukaryogenesis due to the previously unseen diversity of eukaryotic signature proteins. However, our knowledge about these proteins is still relegated to metagenomic data and very little is known about their structural properties. Additionally, it is still unclear if these proteins are functionally homologous to their eukaryotic counterparts. Here, we expressed, purified and structurally characterized profilin from Heimdallarchaeota in the Asgard superphylum. The structural analysis shows that while this profilin possesses similar secondary structural elements as eukaryotic profilin, it contains additional secondary structural elements that could be critical for its function and an indication of divergent evolution.
  •  
10.
  • Hurtig, Fredrik, 1988- (författare)
  • Divisive structures : Two billions years of biofilament evolution
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Our understanding of the functional and regulatory complexity that existed in the eukaryotic progenitor is poor, and investigations have been hindered by our nebulous understanding of where eukaryotes stem from. Recently discovered archaeal lineages with hitherto unseen homology to eukaryotic systems suggest archaea can further our understanding of the eukaryotic cell’s ancestry. However, much of archaeal biology remains largely unexplored. Two eukaryotic systems with archaeal homologues, namely the actin and ESCRT-III protein filament systems, are essential for diverse processes in eukaryotic biology. In this thesis, we show that an archaeal homologue of ESCRT-III divides the cell under proteasomal regulation, a regulatory mechanism central to eukaryotic cell cycle regulation. Additionally, we show how predicted putative profilin and gelsolin homologues regulate the postulated proto-cytoskeleton of Asgard archaea. In investigating the function and regulation of these archaeal systems we demonstrate compelling parallels between archaeal and eukaryotic regulatory strategies which stresses the close evolutionary relationship that exists between these two domains.
  •  
11.
  • Laine, Romain F., et al. (författare)
  • NanoJ : a high-performance open-source super-resolution microscopy toolbox
  • 2019
  • Ingår i: Journal of Physics D. - : IOP Publishing. - 0022-3727 .- 1361-6463. ; 52:16
  • Forskningsöversikt (refereegranskat)abstract
    • Super-resolution microscopy (SRM) has become essential for the study of nanoscale biological processes. This type of imaging often requires the use of specialised image analysis tools to process a large volume of recorded data and extract quantitative information. In recent years, our team has built an open-source image analysis framework for SRM designed to combine high performance and ease of use. We named it NanoJ-a reference to the popular ImageJ software it was developed for. In this paper, we highlight the current capabilities of NanoJ for several essential processing steps: spatio-temporal alignment of raw data (NanoJ-Core), super-resolution image reconstruction (NanoJ-SRRF), image quality assessment (NanoJ-SQUIRREL), structural modelling (NanoJ-VirusMapper) and control of the sample environment (NanoJ-Fluidics). We expect to expand NanoJ in the future through the development of new tools designed to improve quantitative data analysis and measure the reliability of fluorescent microscopy studies.
  •  
12.
  • Lemmens, Liesbeth, et al. (författare)
  • DNA-Binding Properties of a Novel Crenarchaeal Chromatin-Organizing Protein in Sulfolobus acidocaldarius
  • 2022
  • Ingår i: Biomolecules. - : MDPI AG. - 2218-273X. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In archaeal microorganisms, the compaction and organization of the chromosome into a dynamic but condensed structure is mediated by diverse chromatin-organizing proteins in a lineage-specific manner. While many archaea employ eukaryotic-type histones for nucleoid organization, this is not the case for the crenarchaeal model species Sulfolobus acidocaldarius and related species in Sulfolobales, in which the organization appears to be mostly reliant on the action of small basic DNA-binding proteins. There is still a lack of a full understanding of the involved proteins and their functioning. Here, a combination of in vitro and in vivo methodologies is used to study the DNA-binding properties of Sul12a, an uncharacterized small basic protein conserved in several Sulfolobales species displaying a winged helix–turn–helix structural motif and annotated as a transcription factor. Genome-wide chromatin immunoprecipitation and target-specific electrophoretic mobility shift assays demonstrate that Sul12a of S. acidocaldarius interacts with DNA in a non-sequence specific manner, while atomic force microscopy imaging of Sul12a–DNA complexes indicate that the protein induces structural effects on the DNA template. Based on these results, and a contrario to its initial annotation, it can be concluded that Sul12a is a novel chromatin-organizing protein.
  •  
13.
  • Lemmens, Liesbeth, et al. (författare)
  • YtrA(Sa), a GntR-Family Transcription Factor, Represses Two Genetic Loci Encoding Membrane Proteins in Sulfolobus acidocaldarius
  • 2019
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • In bacteria, the GntR family is a widespread family of transcription factors responsible for the regulation of a myriad of biological processes. In contrast, despite their occurrence in archaea only a little information is available on the function of GntR-like transcription factors in this domain of life. The thermoacidophilic crenarchaeon Sulfolobus acidocaldarius harbors a GntR-like regulator belonging to the YtrA subfamily, encoded as the first gene in an operon with a second gene encoding a putative membrane protein. Here, we present a detailed characterization of this regulator, named YtrA(Sa), with a focus on regulon determination and mechanistic analysis with regards to DNA binding. Genome-wide chromatin immunoprecipitation and transcriptome experiments, the latter employing a ytrA(Sa) overexpression strain, demonstrate that the regulator acts as a repressor on a very restricted regulon, consisting of only two targets including the operon encoding its own gene and a distinct genetic locus encoding another putative membrane protein. For both targets, a conserved 14-bp semi-palindromic binding motif was delineated that covers the transcriptional start site and that is surrounded by additional half-site motifs. The crystallographic structure of YtrA(Sa) was determined, revealing a compact dimeric structure in which the DNA-binding motifs are oriented ideally to enable a specific high-affinity interaction with the core binding motif. This study provides new insights into the functioning of a YtrA-like regulator in the archaeal domain of life.
  •  
14.
  • Lindås, Ann-Christin, et al. (författare)
  • A unique cell division machinery in the Archaea
  • 2008
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 105:48, s. 18942-18946
  • Tidskriftsartikel (refereegranskat)abstract
    • In contrast to the cell division machineries of bacteria, euryarchaea, and eukaryotes, no division components have been identified in the second main archaeal phylum, Crenarchaeota. Here, we demonstrate that a three-gene operon, cdv, in the crenarchaeon Sulfolobus acidocaldarius, forms part of a unique cell division machinery. The operon is induced at the onset of genome segregation and division, and the Cdv proteins then polymerize between segregating nucleoids and persist throughout cell division, forming a successively smaller structure during constriction. The cdv operon is dramatically down-regulated after UV irradiation, indicating division inhibition in response to DNA damage, reminiscent of eukaryotic checkpoint systems. The cdv genes exhibit a complementary phylogenetic range relative to FtsZ-based archaeal division systems such that, in most archaeal lineages, either one or the other system is present. Two of the Cdv proteins, CdvB and CdvC, display homology to components of the eukaryotic ESCRT-III sorting complex involved in budding of luminal vesicles and HIV-1 virion release, suggesting mechanistic similarities and a common evolutionary origin.
  •  
15.
  • Lindås, Ann-Christin, et al. (författare)
  • Archaeal Actin-Family Filament Systems.
  • 2017
  • Ingår i: Sub-cellular biochemistry. - Cham : Springer International Publishing. - 0306-0225. ; 84, s. 379-392
  • Tidskriftsartikel (refereegranskat)abstract
    • Actin represents one of the most abundant and conserved eukaryotic proteins over time, and has an important role in many different cellular processes such as cell shape determination, motility, force generation, cytokinesis, amongst many others. Eukaryotic actin has been studied for decades and was for a long time considered a eukaryote-specific trait. However, in the early 2000s a bacterial actin homolog, MreB, was identified, characterized and found to have a cytoskeletal function and group within the superfamily of actin proteins. More recently, an actin cytoskeleton was also identified in archaea. The genome of the hyperthermophilic crenarchaeon Pyrobaculum calidifontis contains a five-gene cluster named Arcade encoding for an actin homolog, Crenactin, polymerizing into helical filaments spanning the whole length of the cell. Phylogenetic and structural studies place Crenactin closer to the eukaryotic actin than to the bacterial homologues. A significant difference, however, is that Crenactin can form single helical filaments in addition to filaments containing two intertwined proto filaments. The genome of the recently discovered Lokiarchaeota encodes several different actin homologues, termed Lokiactins, which are even more closely related to the eukaryotic actin than Crenactin. A primitive, dynamic actin-based cytoskeleton in archaea could have enabled the engulfment of the alphaproteobacterial progenitor of the mitochondria, a key-event in the evolution of eukaryotes.
  •  
16.
  • Lindås, Ann-Christin, et al. (författare)
  • Characterization of the promoter of the gene encoding human tripeptidyl-peptidase II and identification of upstream silencer elements
  • 2007
  • Ingår i: Gene. - : Elsevier BV. - 0378-1119 .- 1879-0038. ; 393:1-2, s. 62-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Tripeptidyl-peptidase II (TPP II) is one of the many proteases involved in the important process of intracellular proteolysis. The widespread distribution and broad substrate specificity suggest that TPP II is encoded by a "house-keeping gene". However, both TPP II protein and mRNA levels vary in different cells. To investigate whether these variations are due to regulation on a genetic level, the promoter of the TPP2 gene has previously been identified. The promoter contains two inverted CCAAT-boxes and an E-box. By means of reporter assays and electrophoretic mobility shift assays the promoter has now been further characterized. It could be concluded that USF-1 (upstream stimulatory factor-1) binds to the E-box in the promoter. The transcription factors NF-Y and USF-1 are present in protein-DNA complexes of different sizes. Mutation of the E-box had no effect, indicating that only binding of NF-Y to the two CCAAT-boxes was important for activation of transcription. However, this does not exclude the possibility that USF-1 can play an important role in transcription in other types of cells. Furthermore, the region upstream of the promoter was investigated due to its ability to inhibit transcription. Several silencer elements were identified and we also showed that Oct-1 binds to one of these elements. Thus, this investigation reveals that TPP II expression could be regulated through both positive and negative regulatory elements. Further studies are required to establish the involvement of different genetic elements, and how the interplay between different transcription factors will affect the transcriptional rate in vivo.
  •  
17.
  •  
18.
  •  
19.
  • Lindås, Ann-Christin, et al. (författare)
  • Investigation of a role for Glu-331 and Glu-305 in substrate binding of tripeptidyl-peptidase II
  • 2008
  • Ingår i: Biochimica et Biophysica Acta - Proteins and Proteomics. - : Elsevier BV. - 1570-9639 .- 1878-1454. ; 1784:12, s. 1899-1907
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to investigate the mechanism by which tripeptidyl-peptidase II (TPP II) can specifically release tripeptides from the free N-terminus of an oligopeptide. The subtilisin-like N-terminal part of TPP II was modelled using subtilisin as template. Two glutamate residues (Glu-305 and Glu-331) appeared to be positioned so as to interact with the positively charged N-terminus of the substrate. In order to test this potential interaction, both residues were replaced by glutamine and lysine. The catalytic efficiency was reduced 400-fold for the E331Q variant and 20000-fold for the E331K variant, compared with the wild-type (wt). A substantial part of this reduction was due to decreased substrate affinity, since the K(M) for both mutants was at least two orders of magnitude greater than for the wt. This decrease was linked specifically to interaction with the free N-terminal amino group, based on inhibition studies. Glu-305 appears to be essential for enzymatic activity, but the extremely low activity of the E305Q variant prevented an investigation of the involvement of Glu-305 in substrate binding. The present work is, to our knowledge, the first report to investigate a mechanism for a tripeptidyl-peptidase activity through site-directed mutagenesis.
  •  
20.
  •  
21.
  • Lindås, Ann-Christin, et al. (författare)
  • Structure of crenactin, an archaeal actin homologue active at 90 degrees C
  • 2014
  • Ingår i: Acta Crystallographica Section D. - 0907-4449 .- 1399-0047. ; 70, s. 492-500
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of the archaeal actin, crenactin, from the rod-shaped hyperthermophilic (optimal growth at 90 degrees C) crenarchaeon Pyrobaculum calidifontis is reported at 3.35 angstrom resolution. Despite low amino-acid sequence identity, the three-dimensional structure of the protein monomer is highly similar to those of eukaryotic actin and the bacterial MreB protein. Crenactin-specific features are also evident, as well as elements that are shared between crenactin and eukaryotic actin but are not found in MreB. In the crystal, crenactin monomers form right-handed helices, demonstrating that the protein is capable of forming filament-like structures. Monomer interactions in the helix, as well as interactions between crenactin and ADP in the nucleotide-binding pocket, are resolved at the atomic level and compared with those of actin and MreB. The results provide insights into the structural and functional properties of a heat-stable archaeal actin and contribute to the understanding of the evolution of actin-family proteins in the three domains of life.
  •  
22.
  • Lindås, Ann-Christin, et al. (författare)
  • The cell cycle of archaea
  • 2013
  • Ingår i: Nature Reviews Microbiology. - : Springer Science and Business Media LLC. - 1740-1526 .- 1740-1534. ; 11:9, s. 627-638
  • Forskningsöversikt (refereegranskat)abstract
    • Growth and proliferation of all cell types require intricate regulation and coordination of chromosome replication, genome segregation, cell division and the systems that determine cell shape. Recent findings have provided insight into the cell cycle of archaea, including the multiple-origin mode of DNA replication, the initial characterization of a genome segregation machinery and the discovery of a novel cell division system. The first archaeal cytoskeletal protein, crenactin, was also recently described and shown to function in cell shape determination. Here, we outline the current understanding of the archaeal cell cycle and cytoskeleton, with an emphasis on species in the genus Sulfolobus, and consider the major outstanding questions in the field.
  •  
23.
  • Lindås, Ann-Christin, 1967- (författare)
  • Tripeptidyl-Peptidase II : Structure, Function and Gene Regulation
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The protein degradation process is of vital importance for the cell to maintain cellular functions. An important enzyme in this process is the multimeric tripeptidyl-peptidase II (TPP II). It removes tripeptides from a free N-terminus of the substrates. TPP II has broad substrate specificity and wide-spread distribution, suggesting that the TPP II gene is a house-keeping gene. However, the levels of both mRNA and TPP II protein varies during different conditions and the TPP II gene promoter was therefore identified and characterized. It is a 215 bp fragment just upstream of the coding sequence. This fragment lacks a TATA-box but contains an initiator, two inverted CCAAT-boxes and an E-box. The CCAAT-boxes and the E-box were found to bind the nuclear factor Y (NF-Y) and upstream stimulatory factor-1 (USF-1) respectively. The CCAAT-boxes appear to be most important for the transcriptional activation. Furthermore, several silencer element were identified further upstream of the 215 bp promoter and the octamer binding factor Oct-1 was found to bind one of these fragments. If Oct-1 is responsible for the inhibition of the transcription of the TPP II gene remains to be investigated. In addition, the substrate specificity was investigated. For this purpose an expression system using Pichia pastoris was developed. The purified recombinant TPP II was found to have the same enzymatic properties as the native enzyme. In order to identify the amino acids involved in the binding of the N-terminus of the substrate, wild-type murine TPP II and four mutants E305Q, E305K, E331Q and E331K were purified. Steady-state kinetic analysis clearly demonstrated that both Glu-305 and Glu-331 are important for this binding as the KMapp is more than 102 higher for the mutants than wild-type. Finally, the pH-dependence for cleavage of two chromogenic substrates was compared for TPP II from different species.
  •  
24.
  • Liu, Han, et al. (författare)
  • BarR, an Lrp-type transcription factor in Sulfolobus acidocaldarius, regulates an aminotransferase gene in a beta- alanine responsive manner
  • 2014
  • Ingår i: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 92:3, s. 625-639
  • Tidskriftsartikel (refereegranskat)abstract
    • In archaea, nothing is known about the -alanine degradation pathway or its regulation. In this work, we identify and characterize BarR, a novel Lrp-like transcription factor and the first one that has a non-proteinogenic amino acid ligand. BarR is conserved in Sulfolobus acidocaldarius and Sulfolobus tokodaii and is located in a divergent operon with a gene predicted to encode -alanine aminotransferase. Deletion of barR resulted in a reduced exponential growth rate in the presence of -alanine. Furthermore, qRT-PCR and promoter activity assays demonstrated that BarR activates the expression of the adjacent aminotransferase gene, but only upon -alanine supplementation. In contrast, auto-activation proved to be -alanine independent. Heterologously produced BarR is an octamer in solution and forms a single complex by interacting with multiple sites in the 170bp long intergenic region separating the divergently transcribed genes. In vitro, DNA binding is specifically responsive to -alanine and site-mutant analyses indicated that -alanine directly interacts with the ligand-binding pocket. Altogether, this work contributes to the growing body of evidence that in archaea, Lrp-like transcription factors have physiological roles that go beyond the regulation of -amino acid metabolism.
  •  
25.
  • Liu, Han, et al. (författare)
  • The genome-scale DNA-binding profile of BarR, a beta-alanine responsive transcription factor in the archaeon Sulfolobus acidocaldarius
  • 2016
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The Leucine-responsive Regulatory Protein (Lrp) family is a widespread family of regulatory transcription factors in prokaryotes. BarR is an Lrp-like transcription factor in the model archaeon Sulfolobus acidocaldarius that activates the expression of a beta-alanine aminotransferase gene, which is involved in beta-alanine degradation. In contrast to classical Lrp-like transcription factors, BarR is not responsive to any of the alpha-amino acids but interacts specifically with beta-alanine. Besides the juxtaposed beta-alanine aminotransferase gene, other regulatory targets of BarR have not yet been identified although beta-alanine is the precursor of coenzyme A and thus an important central metabolite. The aim of this study is to extend the knowledge of the DNA-binding characteristics of BarR and of its corresponding regulon from a local to a genome-wide perspective. Results: We characterized the genome-wide binding profile of BarR using chromatin immunoprecipation combined with high-throughput sequencing (ChIP-seq). This revealed 21 genomic binding loci. High-enrichment binding regions were validated to interact with purified BarR protein in vitro using electrophoretic mobility shift assays and almost all targets were also shown to harbour a conserved semi-palindromic binding motif. Only a small subset of enriched genomic sites are located in intergenic regions at a relative short distance to a promoter, and qRT-PCR analysis demonstrated that only one additional operon is under activation of BarR, namely the glutamine synthase operon. The latter is also a target of other Lrp-like transcription factors. Detailed inspection of the BarR ChIP-seq profile at the beta-alanine aminotransferase promoter region in combination with binding motif predictions indicate that the operator structure is more complicated than previously anticipated, consisting of multiple (major and auxiliary) operators. Conclusions: BarR has a limited regulon, and includes also glutamine synthase genes besides the previously characterized beta-alanine aminotransferase. Regulation of glutamine synthase is suggestive of a link between beta-alanine and alpha-amino acid metabolism in S. acidocaldarius. Furthermore, this work reveals that the BarR regulon overlaps with that of other Lrp-like regulators.
  •  
26.
  • Pelve, Erik A., 1980-, et al. (författare)
  • Cdv-based cell division and cell cycle organization in the thaumarchaeon Nitrosopumilus maritimus
  • 2011
  • Ingår i: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 82:3, s. 555-566
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell division is mediated by different mechanisms in different evolutionary lineages. While bacteria and euryarchaea utilize an FtsZ-based mechanism, most crenarchaea divide using the Cdv system, related to the eukaryotic ESCRT-III machinery. Intriguingly, thaumarchaeal genomes encode both FtsZ and Cdv protein homologues, raising the question of their division mode. Here, we provide evidence indicating that Cdv is the primary division system in the thaumarchaeon Nitrosopumilus maritimus. We also show that the cell cycle is differently organized as compared to hyperthermophilic crenarchaea, with a longer pre-replication phase and a shorter post-replication stage. In particular, the time required for chromosome replication is remarkably extensive, 15-18 h, indicating a low replication rate. Further, replication did not continue to termination in a significant fraction of N. maritimus cell populations following substrate depletion. Both the low replication speed and the propensity for replication arrest are likely to represent adaptations to extremely oligotrophic environments. The results demonstrate that thaumarchaea, crenarchaea and euryarchaea display differences not only regarding phylogenetic affiliations and gene content, but also in fundamental cellular and physiological characteristics. The findings also have implications for evolutionary issues concerning the last archaeal common ancestor and the relationship between archaea and eukaryotes.
  •  
27.
  • Pelve, Erik A., et al. (författare)
  • Four chromosome replication origins in the archaeon Pyrobaculum calidifontis
  • 2012
  • Ingår i: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 85:5, s. 986-995
  • Tidskriftsartikel (refereegranskat)abstract
    • Replication origins were mapped in hyperthermophilic crenarchaea, using high-throughput sequencing-based marker frequency analysis. We confirm previous origin mapping in Sulfolobus acidocaldarius, and demonstrate that the single chromosome of Pyrobaculum calidifontis contains four replication origins, the highest number detected in a prokaryotic organism. The relative positions of the origins in both organisms coincided with regions enriched in highly conserved (core) archaeal genes. We show that core gene distribution provides a useful tool for origin identification in archaea, and predict multiple replication origins in a range of species. One of the P. calidifontis origins was mapped in detail, and electrophoretic mobility shift assays demonstrated binding of the Cdc6/Orc1 replication initiator protein to a repeated sequence element, denoted Orb-1, within the origin. The high-throughput sequencing approach also allowed for an annotation update of both genomes, resulting in the restoration of open reading frames encoding proteins involved in, e.g., sugar, nitrate and energy metabolism, as well as in glycosylation and DNA repair.
  •  
28.
  • Reimann, Julia, et al. (författare)
  • Archaeal Signal Transduction : Impact of Protein Phosphatase Deletions on Cell Size, Motility, and Energy Metabolism in Sulfolobus acidocaldarius
  • 2013
  • Ingår i: Molecular & Cellular Proteomics. - : Elsevier BV. - 1535-9476 .- 1535-9484. ; 12:12, s. 3908-3923
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.
  •  
29.
  • Survery, Sabeen, et al. (författare)
  • Heimdallarchaea encodes profilin with eukaryotic-like actin regulation and polyproline binding
  • 2021
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • It is now widely accepted that the first eukaryotic cell emerged from a merger of an archaeal host cell and an alphaproteobacterium. However, the exact sequence of events and the nature of the cellular biology of both partner cells is still contentious. Recently the structures of profilins from some members of the newly discovered Asgard superphylum were determined. In addition, it was found that these profilins inhibit eukaryotic rabbit actin polymerization and that this reaction is regulated by phospholipids. However, the interaction with polyproline repeats which are known to be crucial for the regulation of profilin:actin polymerization was found to be absent for these profilins and was thus suggested to have evolved later in the eukaryotic lineage. Here, we show that Heimdallarchaeota LC3, a candidate phylum within the Asgard superphylum, encodes a putative profilin (heimProfilin) that interacts with PIP2 and its binding is regulated by polyproline motifs, suggesting an origin predating the rise of the eukaryotes. More precisely, we determined the 3D-structure of Heimdallarchaeota LC3 profilin and show that this profilin is able to: i) inhibit eukaryotic actin polymerization in vitro; ii) bind to phospholipids; iii) bind to polyproline repeats from enabled/vasodilator‐stimulated phosphoprotein; iv) inhibit actin from Heimdallarchaeota from polymerizing into filaments. Our results therefore provide hints of the existence of a complex cytoskeleton already in last eukaryotic common ancestor.
  •  
30.
  • Tarrason Risa, Gabriel, et al. (författare)
  • The proteasome controls ESCRT-III-mediated cell division in an archaeon
  • 2020
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 369:6504
  • Tidskriftsartikel (refereegranskat)abstract
    • Sulfolobus acidocaldarius is the closest experimentally tractable archaeal relative of eukaryotes and, despite lacking obvious cyclin-dependent kinase and cyclin homologs, has an ordered eukaryote-like cell cycle with distinct phases of DNA replication and division. Here, in exploring the mechanism of cell division in S. acidocaldarius, we identify a role for the archaeal proteasome in regulating the transition from the end of one cell cycle to the beginning of the next. Further, we identify the archaeal ESCRT-III homolog, CdvB, as a key target of the proteasome and show that its degradation triggers division by allowing constriction of the CdvB1:CdvB2 ESCRT-III division ring. These findings offer a minimal mechanism for ESCRT-III-mediated membrane remodeling and point to a conserved role for the proteasome in eukaryotic and archaeal cell cycle control.
  •  
31.
  • Tomkinson, Birgitta, et al. (författare)
  • Tripeptidyl-peptidase II : a multi-purpose peptidase.
  • 2005
  • Ingår i: Int J Biochem Cell Biol. - 1357-2725. ; 37:10, s. 1933-7
  • Forskningsöversikt (populärvet., debatt m.m.)abstract
    • Tripeptidyl-peptidase II is a high-molecular weight peptidase with a widespread distribution in eukaryotic cells. The enzyme sequentially removes tripeptides from a free N-terminus of longer peptides and also displays a low endopeptidase activity. A role for tripeptidyl-peptidase II in the formation of peptides for antigen presentation has recently become evident, and the enzyme also appears to be important for the degradation of some specific substrates, e.g. the neuropeptide cholecystokinin. However, it is likely that the main biological function of tripeptidyl-peptidase II is to participate in a general intracellular protein turnover. This peptidase may act on oligopeptides generated by the proteasome, or other endopeptidases, and the tripeptides formed would subsequently be good substrates for other exopeptidases. The fact that tripeptidyl-peptidase II activity is increased in sepsis-induced muscle wasting, a situation of enhanced protein turnover, corroborates this biological role.
  •  
32.
  • Wang, Kun, et al. (författare)
  • A bacterial-like FadR transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • In accordance with the important biological roles of fatty acids, their metabolism is under complex regulation in bacteria and eukaryotes. In contrast, although certain archaea also appear to metabolize fatty acids, nothing is known about the regulation of the underlying pathways in these organisms. Here we show that the crenarchaeon Sulfolobus acidocaldarius harbors a bacterial-type TetR-family transcriptional regulator FadRSa and that it is involved in regulation of fatty acid metabolism. Functional and structural analyses show that the regulator binds semi-palindromic recognition sites in two distinct operator-dependent binding modes and that binding of fatty acyl-CoA molecules causes dissociation of FadRSa-DNA complexes by inducing conformational changes in the protein. Curiously, despite the similarity in overall structure and mechanisms between FadRSa and bacterial TetR-family FadR regulators, we reveal a fundamentally different acyl-CoA binding mode that suggests convergent evolution. Genome-wide transcriptomic and FadRSa-specific chromatin immunoprecipitation analyses further demonstrate that the transcription factor acts as a local repressor of a gene cluster comprising 23 open reading frames that encode lipases, beta-oxidation enzymes and acetyl-CoA acetyltransferases. We conclude that lipid degradation and fatty acid metabolism in S. acidocaldarius is subject to an acyl-CoA responsive transcriptional repression by a homolog of bacterial TetR-family FadR proteins of which the regulatory mechanism suggests that the regulated gene cluster minimally has a catabolic function.
  •  
33.
  • Wang, Kun, et al. (författare)
  • A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Fatty acid metabolism and its regulation are known to play important roles in bacteria and eukaryotes. By contrast, although certain archaea appear to metabolize fatty acids, the regulation of the underlying pathways in these organisms remains unclear. Here, we show that a TetR-family transcriptional regulator (FadR(sa)) is involved in regulation of fatty acid metabolism in the crenarchaeon Sulfolobus acidocaldarius. Functional and structural analyses show that FadR(sa) binds to DNA at semi-palindromic recognition sites in two distinct stoichiometric binding modes depending on the operator sequence. Genome-wide transcriptomic and chromatin immunoprecipitation analyses demonstrate that the protein binds to only four genomic sites, acting as a repressor of a 30-kb gene cluster comprising 23 open reading frames encoding lipases and beta-oxidation enzymes. Fatty acyl-CoA molecules cause dissociation of FadR(sa) binding by inducing conformational changes in the protein. Our results indicate that, despite its similarity in overall structure to bacterial TetR-family FadR regulators, FadR(sa) displays a different acyl-CoA binding mode and a distinct regulatory mechanism.
  •  
34.
  • Wang, Kun, et al. (författare)
  • Genome-wide transcription responses during transition from exponential growth to stationary phase in the Archaeon Sulfolobus solfataricus
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Transition from exponential phase to stationary phase has been extensively studied in bacteria, which brings in-depth knowledge about bacterial cell adaptation, stress response, and transcriptional regulation network, such as stationary specific σ factors and (p)ppGpp mediated stringent response, etc. However, little is known for archaeal in this field. To shed light on archaeal phase adaptation and metabolic responses during growth phase transitions, global gene expression during growth of S. solfataricus were studied. Total RNAs from cells that were collected at 4 time points, representing exponential growth, the transition stage, early stationary phase and late stationary phase were extracted and sequenced. RNA-seq analysis identified a total of 1067 differentially expressed genes during phase transition, which included 456 induced genes most of which are related to transposases, stress response, and transcription factors, 464 repressed genes most of them involved in translation, basic transcriptional apparatus, DNA replication, cell division, amino acids metabolism and defense mechanisms, and 147 genes with fluctuated profile including transporters, oxidation-reduction process related genes and few metabolic genes. This study not only provide an overview of gene expression profiles of S. solfataricus during growth phase transition, but also provide a rich repository for further studies by the archaea community.
  •  
35.
  • Wang, Kun, 1983- (författare)
  • Transcription regulation and growth phase transition in hyperthermoacidophilic archaea
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Organisms from the domain Archaea are ubiquitously represented on our planet and encompass diverse fascinating organisms. The genus Sulfolobus belonging to the phylum Crenarchaeota including hyperthermoacidophilic strains that grow optimally at 65-85°C and pH 2-3. These organisms have been used as model organisms for thermophiles to investigate archaeal DNA replication, transcription, translation, cell cycle, etc.The focus of this thesis is on the study of archaeal specific transcription factors (TFs) as well as transcriptome changes during growth phase transition of the hyperthermoacidophilic archaeons Sulfolobus acidocaldarius and Sulfolobus solfataricus, respectively, to expand our knowledge on archaeal transcription regulation and growth phase adaptation.In paper 1, we studied the genome-wide binding sites of BarR, which is a β-alanine responsive Lrp family TF that activates the expression of β-alanine aminotransferase located in a divergent operon in S. acidocaldarius. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) revealed 21 binding regions, including previously characterized barR/Saci_2137 intergenic region. However, only one additional operon containing two glutamine synthase genes (Saci_2320 and Saci_2321) was found to be under activation of BarR. This operon is a common target of LyM and Sa-Lrp, which indicates a regulatory network between different Lrp-like regulators. In paper 2, we showed that a TetR family transcription repressor FadRSa regulates fatty acid metabolism in S. acidocaldarius. FadRSa rests in a gene cluster, Saci_1103-Saci_1126, that mainly contains lipid degradation and fatty acid metabolism genes. ChIP-seq revealed four binding sites within the gene cluster and RNA-seq further confirmed that the entire gene cluster is repressed by FadRSa. FadRSa binds DNA at a 16-base pair motif with dyad symmetry, and binding of medium- to long-chain acyl-CoA molecules resulted in dissociation of FadRSa from the DNA. Although FadRSa is similar to its bacterial counterparts functionally and structurally, fundamentally different ligand binding mode has been observed.In paper 3, transcriptome data of S. solfataricus at four time points during growth, including early exponential phase, late exponential phase, early stationary phase and late stationary phase, has been studied and revealed a massive change in gene expressions during growth phase transition. 1067 out of a total of 2978 (35.8%) protein coding genes were identified as differentially expressed, which included 456 induced genes most of which were related to transposase, metabolism and stress response, 464 repressed genes most of them involved in translation, basic transcription, DNA replication, amino acids metabolism and defence mechanisms, and 147 genes with fluctuated profile including transporters, oxidation-reduction process related genes and few metabolic genes.In summary, the studies of two metabolic related TFs in S. acidocaldarius, BarR and FadRSa, shed light on their function and regulatory mechanisms. In addition, the transcriptome data of S. solfataricus not only reveals genome-wide alteration of gene expression during growth phase transition, but also provide a rich source of information for further studies by the archaea research community.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-35 av 35
Typ av publikation
tidskriftsartikel (23)
annan publikation (6)
doktorsavhandling (3)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (24)
övrigt vetenskapligt/konstnärligt (9)
populärvet., debatt m.m. (2)
Författare/redaktör
Lindås, Ann-Christin (32)
Bernander, Rolf (8)
Tomkinson, Birgitta (8)
Valegård, Karin (6)
Widersten, Mikael (4)
Ettema, Thijs J. G. (4)
visa fler...
Wang, Kun (4)
Eriksson, Sandra (3)
Siebers, Bettina (3)
Couturier, Mohea (3)
Jonas, Kristina (2)
Pelve, Erik A. (2)
Jonsson, Ann-Beth (2)
Chi, Celestine N. (2)
Liu, Han (2)
Survery, Sabeen (2)
Eklund, Sandra (2)
Hamnevik, Emil (2)
Sigurlásdóttir, Sara (2)
Rosengren, K. Johan (1)
Andersson, Anders F. (1)
Lindgren, Maria T. (1)
Lundgren, Magnus, 19 ... (1)
Svärd, Staffan (1)
Lundgren, Magnus (1)
Hjort, Karin (1)
Mira, Alex (1)
Gustafsson, Nils (1)
Morgenstern, Ralf, P ... (1)
Wright, Phillip C. (1)
Guy, Lionel, PhD, Do ... (1)
Bray, Sian (1)
Amman, Fabian (1)
Fan, Catherine (1)
Karlsson, Erik A. (1)
Braun, Tatjana (1)
Orlova, Albina (1)
Schröder, Gunnar F. (1)
Egelman, Edward H. (1)
Van Nieuwerburgh, Fi ... (1)
Snijders, Ambrosius ... (1)
Kaessmann, Henrik (1)
Šarić, Anđela (1)
Wassing, Gabriela M. (1)
Eriksson, Jens, 1982 ... (1)
Tomkinson, Birgitta, ... (1)
Poplawski, Andrzej B ... (1)
Grogan, Dennis W. (1)
Kelman, Zvi (1)
Pelve, Erik (1)
visa färre...
Lärosäte
Uppsala universitet (21)
Stockholms universitet (20)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (33)
Odefinierat språk (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (30)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy