SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lind P. Monica Docent) "

Sökning: WFRF:(Lind P. Monica Docent)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rönn, Monika, 1965- (författare)
  • Environmental Contaminants and Obesity
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Obesity is a worldwide problem affecting both children and adults. Genetic, physiological, environmental, psychological, social and economic factors interact in varying degrees, influencing body weight and fat distribution and the progress of obesity. Moreover, some anthropogenic chemicals have proven to be endocrine disrupting chemicals (EDCs) with the potential to interfere with different actions of hormones in the body. EDCs may thereby disrupt homeostasis, modifying developmental, behavioral and immune functions in humans and animals, and also promoting adiposity. Because hormones generally act at low concentrations, small changes in the endocrine system may lead to extensive effects. Based on data from experimental and epidemiological studies this thesis elucidates the relationship between a large number of environmental contaminants and obesity.The experimental studies demonstrated that fructose supplementation in the drinking water resulted in unfavorable metabolic alterations such as a higher liver somatic index (LSI), an increase in plasma triglycerides and increased plasma levels of apo A-I. Fructose in combination with exposure to bisphenol A (BPA) increased liver fat content and plasma levels of apo A-I in juvenile female Fischer 344 rats. The experimental studies also showed that the retro-peritoneal fat, which in rats is a distinct fat depot easy to distinguish and dissect, correlated well with the measurements of total fat mass analyzed with MRI, and could therefore be used as a substitute for total fat mass in rats.The epidemiological studies showed that circulating levels of persistent organic pollutants (POPs) were related to fat mass measured by DXA. OCDD, HCB, TNC, DDE and the less chlorinated PCBs were positively related to fat mass, while the more highly chlorinated PCBs showed a negative association. Further, circulating levels of BPA were positively associated with levels of the hormones adiponectin and leptin, but negatively related with ghrelin, hormones which are involved in the regulation of hunger and satiety. However, serum BPA levels were not related to measures of fat mass in the elderly individuals in the PIVUS cohort.This thesis concludes that environmental contaminants such as BPA and POPs most likely are contributors, along with genetic, social and behavioral factors, to the development of obesity.
  •  
2.
  • Lind, Thomas, Docent, 1965-, et al. (författare)
  • Developmental low-dose exposure to bisphenol A induces chronic inflammation, bone marrow fibrosis and reduces bone stiffness in female rat offspring only
  • 2019
  • Ingår i: Environmental Research. - : Elsevier BV. - 0013-9351 .- 1096-0953. ; 177
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Developmental exposure to low doses of the endocrine disruptor bisphenol A (BPA) is known to alter bone tissue in young rodents, although how bone tissue is affected in aged animals is not well known. We have recently shown that low-dose developmental exposure to BPA increases procollagen type I N-terminal propeptide (P1NP) levels, a peptide formed during type 1 collagen synthesis, in plasma of 5-week-old female rat offspring while male offspring showed reduced bone size.Objective: To analyze offspring bone phenotype at 52 weeks of age and clarify whether the BPA-induced increase in P1NP levels at 5 weeks is an early sign of bone marrow fibrosis development.Methods: As in our 5-week study, pregnant Fischer 344 rats were exposed to BPA via drinking water corresponding to 0.5 mu g/kg BW/day (BPA0.5), which is in the range of human daily exposure, or 50 mu g/kg BW/day (BPA50) from gestational day 3.5 until postnatal day 22. Controls were given only vehicle. The offspring were sacrificed at 52 weeks of age. Bone effects were analyzed using peripheral quantitative and micro-computed tomography (microCT), 3-point bending test, plasma markers and histological examination.Results: Compared to a smaller bone size at 5 weeks, at the age of 52 weeks, femur size in male offspring had been normalized in developmentally BPA-exposed rats. The 52-week-old female offspring showed, like the 5-week-old siblings, higher plasma P1NP levels compared to controls but no general increasing bone growth or strength. However, 2 out of 14 BPA-exposed female offspring bones developed extremely thick cortices later in life, discovered by systematic in vivo microCT scanning during the study. This was not observed in male offspring or in female controls. Biomechanical testing revealed that both doses of developmental BPA exposure reduced femur stiffness only in female offspring. In addition, histological analysis showed an increased number of fibrotic lesions only in the bone man ow of female rat offspring developmentally exposed to BPA. In line with this, plasma markers of inflammation, Tnf (in BPA0.5) and Timpl (in BPA50) were increased exclusively in female offspring.Conclusions: Developmental BPA exposure at an environmentally relevant concentration resulted in female specific effects on bone as well as on plasma biomarkers of collagen synthesis and inflammation. Even a dose approximately eight times lower than the current temporary EFSA human tolerable daily intake of 4 mu g/kg BW/day, appeared to induce bone stiffness reduction, bone man ow fibrosis and chronic inflammation in female rat offspring later in life.
  •  
3.
  • Lind, Thomas, Docent, 1965-, et al. (författare)
  • Studies of indirect and direct effects of hypervitaminosis A on rat bone by comparing free access to food and pair-feeding.
  • 2018
  • Ingår i: Upsala Journal of Medical Sciences. - : Uppsala Medical Society. - 0300-9734 .- 2000-1967. ; 123:2, s. 82-85
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The most prominent features of hypervitaminosis A in rats are spontaneous fractures and anorexia. Since caloric restriction induces alterations in bone, some effects could be secondary to loss of appetite. To clarify the mechanisms behind vitamin A-induced bone fragility it is necessary to distinguish between direct and indirect effects.MATERIALS AND METHODS: In this study we compared rats fed high doses of vitamin A both with pair-fed controls, which were fed the same amount of chow as that consumed by the vitamin A group to keep food intake the same, and to controls with free access to food.RESULTS: In contrast to the pair-fed animals, rats in the free access group fed high doses of vitamin A for 7 days had 13% lower food intake, 15% lower body weight, and 2.7% shorter femurs compared with controls. In addition, serum biomarkers of bone turnover were reduced. Peripheral quantitative computed tomography of the femurs showed that the bone mineral content, cross sectional area, and periosteal circumference were similarly reduced in the pair-fed and free access groups. However, bone mineral density (BMD) and cortical parameters were only significantly decreased in the free access group.CONCLUSIONS: Our data indicate that the major direct short-term effect of high doses of vitamin A on rat bone is a reduced bone diameter, whereas the effects on bone length, serum biomarkers of bone turnover, BMD, and bone cortex appear to be mainly indirect, caused by a systemic toxicity with loss of appetite, reduced food intake, and general effects on growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy